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Abstract

Organisms modify their development and function in response to the

environment. At the same time, the environment is modified by the activities

of the organism. Despite the ubiquity of such dynamical interactions in nature,

it remains challenging to develop models that accurately represent them, and

that can be fitted using data. These features are desirable when modeling

phenomena such as phenotypic plasticity, to generate quantitative predictions

of how the system will respond to environmental signals of different

magnitude or at different times, for example, during ontogeny. Here, we

explain a modeling framework that represents the organism and environment

as a single coupled dynamical system in terms of inputs and outputs. Inputs are

external signals, and outputs are measurements of the system in time. The

framework uses time‐series data of inputs and outputs to fit a nonlinear black‐
box model that allows to predict how the system will respond to novel input

signals. The framework has three key properties: it captures the dynamical

nature of the organism–environment system, it can be fitted with data, and it

can be applied without detailed knowledge of the system. We study phenotypic

plasticity using in silico experiments and demonstrate that the framework

predicts the response to novel environmental signals. The framework allows

us to model plasticity as a dynamical property that changes in time during

ontogeny, reflecting the well‐known fact that organisms are more or less

plastic at different developmental stages.
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1 | INTRODUCTION

Models in biology are important tools that organize
experimental observations, reveal salient aspects of the
biological system, and provide falsifiable predictions. A
challenge when representing organisms in such models

is to accurately capture their capacity to actively modify
their development and function in response to their
environment, or to “act on their own behalf”
(Kauffman, 2003), a key feature of biological agency
(Sultan et al., 2022). Moreover, since those organismal
responses can modify the environment (Odling Smee
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et al., 2003), the result is a complex interaction between
organism and environment that makes the outcome (e.g.,
new phenotypic state) of environmental signals difficult
to predict.

At any time point, the organism (or environment) is
both affecting and being affected by the environment (or
organism). The organism–environment system is then
dynamic, in the sense that it is in constant change, with
its behavior at a given time depending on its state at that
time. Models must capture this dynamical and contin-
gent aspect to be able to predict the system's temporal
behavior, and potentially control it. Such predictive
models can have a wide range of important applications
in ecological and evolutionary developmental biology
(Gilbert et al., 2015; Sultan, 2007), including the study of
how interactions between embryos and their environ-
ment give rise to tissues and organs, how organisms
modify their behavior and physiology in response to
stress, and, for longer time‐scales, how such environ-
mental responsiveness interacts with selective pressures,
resulting in evolutionary change through niche
construction.

One way to model the relationship between organis-
mal features and environmental factors is through
statistical techniques, such as regression or covariance
analyses, that can capture certain patterns from mea-
sured empirical data. These representations include
reaction norms, which are commonly defined in a
cartesian plane, with some measure of the environment
in the x‐axis, a measure of the phenotypic trait on the y‐
axis, and a statistical regression associating the two
(Schlichting & Pigliucci, 1988). For simplicity, reaction
norms are typically (but not always, see Pigliucci
et al., 1996) done with phenotypic measures at a fixed
developmental stage, commonly adulthood. Such repre-
sentation of the organism–environment system provides
a statistical snapshot of the constructive and contingent
process described above. While it can be useful to study
certain aspects of plasticity, such as its between‐
individual variation and whether it is likely to evolve in
response to natural selection (Dingemanse et al., 2010;
Nussey et al., 2007), a static representation that focusses
on a fixed moment in development is not suitable to
address aspects such as how plasticity can change during
the organism's lifetime, or how the plastic response
depends on the timing of the environmental change.
These aspects may have important implications for
development and evolution, but such implications
cannot be studied with representations of the
organism–environment system that do not explicitly
incorporate developmental time. Indeed, because orga-
nism and environment interact dynamically in time,
statistical measures of covariance and regression can also

change through ontogeny, and a single value at a fixed
developmental time could be a misleading representation
of the system (Milocco & Salazar‐Ciudad, 2022; Sugihara
et al., 2012). Furthermore, while it is commonly observed
that reaction norms or trait integration indeed change
over ontogeny (Mitteroecker & Bookstein, 2009; Nilsson‐
Örtman et al., 2015; Pottier et al., 2022), there remains
substantial ambiguity and controversy over what such
patterns imply about development and evolution (e.g.,
Armbruster et al., 2014; Hubbe et al., 2023; Pigliucci
et al., 1996).

The dynamical properties of the organism–environment
system could be captured through models that explicitly
represent the causal interactions between the components
of the system, known as process‐based or mechanistic
models. While some examples of this type of modeling exist
for well‐studied gene regulatory networks (e.g., the gap
gene network, Jaeger & Monk, 2014; Verd et al., 2019) and
some organs (e.g., teeth, Salazar‐Ciudad & Jernvall, 2010),
they rarely incorporate the role of environment. This is not
surprising given that extensive detail on the causal relations
between organism and environment would be needed to
build such models. This severely limits the applicability of
this type of models to empirical data.

The objective of this paper is to explain a modeling
framework for the organism–environment system that
can be fitted with empirical time‐series data, while still
capturing the dynamical nature of the system. This
data‐driven approach enables the study of the
organism–environment system in time, beyond relying
solely on statistical associations at a fixed moment. The
identified model can be used to make predictions about
how focal features of the system (e.g., a phenotypic state)
will respond to perturbations or signals of different
magnitudes or at different points in time. Importantly,
the framework proposed here can represent nonlinear
dynamics, which is the general case for biological
systems.

The central idea of the framework is to represent the
organism–environment coupled dynamical system in
terms of inputs and outputs (Ljung & Glad, 2016). Inputs
are the signals received by the system and that affect the
internal states, while outputs are functions of these
internal states of the system that we can measure in time.
Here we propose to relate the inputs and outputs of the
system through a black‐box model, which does not
require knowledge of the underlying biological mecha-
nisms and network of interactions of the system, but can
be fitted, or identified, with time‐series data of known
inputs and outputs (Ljung & Glad, 2016). In this way, the
parameters of these models do not have direct biological
or physical meaning, but rather describe the properties of
the input–output relationships of the system.
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Black‐box modeling of the type we suggest here has a
long history in the field of systems identification (Ljung
& Glad, 2016; Södeström & Stoica, 1989). Linear
modeling dates back to the 1950s, while nonlinear
identification has become increasingly popular in recent
years to solve problems that cannot be solved with linear
approaches (Pillonetto et al., 2022; Schoukens &
Ljung, 2019). A limitation of nonlinear methods is that
they typically require a large amount of data in the
operation region to calibrate the model. Despite this
limitation, nonlinear systems identification has been
successfully applied in multiple problems, including the
modeling of airplanes and telecommunications (Mu
et al., 2005; Schoukens & Ljung, 2019). In ecology, some
of these ideas are the basis of the framework known as
Empirical Dynamical Modeling (EDM; Deyle et al., 2016;
Munch et al., 2022; Sugihara et al., 2012). EDM has been
used to model species abundance and interactions in
ecological networks, mostly in the context of autono-
mous (i.e., without external inputs) and chaotic systems
in an attractor (Munch et al., 2022, but see Brias &
Munch, 2021). In this paper, we propose to use the
powerful methods of input–output modeling to represent
the organism–environment coupled system. We suggest
that this has great potential to study phenomena that
change over time or that depend on the system's history,
such as plasticity and behavior.

Using in silico experiments, we illustrate how this
framework can be used to build models that can predict
the phenotypic response to new environmental signals of
different magnitudes and timing. Further, we use this to
define a measurement of plasticity that changes during
developmental time. This is useful if, for example, the
aim is to detect developmental stages that are particularly
sensitive to environmental perturbations, or to poten-
tially control the organism–environment system and
bring it to a desired phenotypic value. Finally, we discuss
why these objectives would be difficult to obtain using a
static description of plasticity, such as a reaction norm at
a fixed developmental stage.

2 | RESULTS

2.1 | The general model for the
organism–environment system

Beer (1995) suggested that an agent—for example, a
responsive organism—and environment can be mod-
eled as a single coupled dynamical system whose
mutual interaction is jointly responsible for the agent's
behavior. In keeping with this literature, we refer to the
responsive organism (or focal part of an organism) as an

‘agent’ throughout the description of the modeling
framework.

We represent the agent and the environment as a
coupled dynamical system using the following equations
(simplified from Beer, 1995),

x
x x u

d

dt
f= ( , , ),A
A A E (1)

x
x x u

d

dt
f= ( , , ),E
E E A (2)

where xA is the state vector of the agent, xE is the state
vector of the environment, u is a vector of inputs, the
functions fA and fE are the dynamical laws, and d dt/

represents the time derivative. The states are the minimal
set of variables needed to completely describe the
system's behavior. Note that xA, xE, and u are variables
of time. The equations show that the change in the vector
describing the states of the agent depends on the value of
the states of the agent, the values of the states of
the environment, and some other inputs. Similarly, the
change in the states of the environment depends on the
states of the environment, the states of the agent, and on
other inputs.

Equations (1) and (2) are known as the state‐space
representation of the system (Beer, 1995; Ljung &
Glad, 2016). This representation shows explicitly how
the states change in time. By defining appropriate
states for the agent and the environment, and with
knowledge of the dynamical laws and initial condi-
tions, the state‐space equations are a complete
representation of a given system. Note that the
environmental states xE that go into Equations (1)

and (2) refer to the local environment of the agent,
which can be affected by the activities of the agent.
This local environment is also affected by larger‐scale
environmental factors, which here would enter as
external inputs u. For example, the availability of
glucose around a biofilm (xE, local environment) is
affected by the metabolism of the biofilm (xA) as well
as the bulk concentration of glucose (u).

The agent–environment coupled dynamical system as
described above can be represented with the simplified
block diagram given in Figure 1a, where A is the agent, E
is the environment interacting with the agent, u is a set
of inputs and y is a set of measurements that we can
obtain from the system, that we call outputs. The dotted
lines represent the coupled agent–environment system.
Figure 1b shows a more detailed representation of the
coupled system, which is a graphic representation of
Equations (1) and (2). Note that the outputs y are a
combination of the states of the agent and the
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environment given by a function g. Also note that u
contains both measurable and unmeasurable inputs. The
latter are considered process noise.

2.2 | Building an input–output model

The central idea of the framework proposed in this work
is to represent the organism–environment system using
an input–output model. This type of model relates the
inputs and outputs in time of the dynamical system and
can be used to make predictions and study the system's
dynamics (Ljung & Glad, 2016). Particularly, we focus
here on the general case in which nothing about the real
network of interactions between organism and environ-
ment is known. That means that we only have access to
measurements of the inputs and outputs, something that
would be true in many real‐life situations. For example,
we may have data on the amount of solar energy received
in a patch of soil, the soil temperature near the egg, and
the sex of hatchling turtles emerging from their nests, but
limited knowledge of the mechanisms of temperature‐
dependent sex determination, or how embryos shift their
position within the egg in response to natural tempera-
ture fluctuations (Ye et al., 2019). In such a general case,
we can build “black‐box” models (Ljung & Glad, 2016).
The parameters of these models lack direct biological
meaning but represent the properties of the input–output

relationships of the system. Notably, when some insight
about the interactions is known, a “gray‐box” model can
be built with similar ideas to the ones presented here.
These models can therefore be used to directly measure
and interpret biological and physical variables (Ljung &
Glad, 2016).

Here, we are interested in describing the dynamics of
the coupled organism–environment system using an
input–output model. For simplicity, we focus on models
with one input and one output, but more inputs and
outputs can be accommodated as suggested below.
Input–output models are typically described in discrete
time, since data are collected from the system in sampled
form (Ljung & Glad, 2016). This means that, experimen-
tally, one has access to N data points of inputs u i( ) and
outputs y i( ) for i N= 1, 2, 3, …, . We focus on models
that predict the value of the output at time i as a function
of both the inputs u and outputs y at times j i< ,

ŷ i F u i u i u i n

y i y i y i n

( ) = ( ( − 1), ( − 2), …, ( − ),

( − 1), ( − 2), …, ( − ))

u

y

(3)

where F is a function that combines the past nu inputs
and ny outputs to predict the output at time i, symbolized
y iˆ ( ). The difference between y i( ) and y iˆ ( ) is the
prediction error. Equation (3) is schematically repre-
sented in Figure 1c.

(a) (b)

(c)

FIGURE 1 Different representations of the framework. (a) is a simplified schematic representing agent A and environment E
interacting with each other, forming the coupled system represented by the dotted lines. There are inputs entering the system and outputs
that can be measured. (b) represents Equations (1) and (2) in block diagrams. The symbol ∫ represents the integration with respect to time,
since fA and fE return the time derivatives of xA and xE , respectively. The outputs of the system y are a combination of the state variables of
the coupled system. That combination is represented as a function g. (c) represents the general approach proposed in this paper, given in
Equation (3). Operator d is the delay operator, which returns a delayed copy of a signal. The parameters nu and ny determine the number of
past inputs and outputs, respectively, that are used for prediction of the output at time i which is symbolized y iˆ ( ).

4 | MILOCCO and ULLER

 1525142x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ede.12449 by D

uodecim
 M

edical Publications L
td, W

iley O
nline L

ibrary on [08/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



An important note is that not all nonlinear systems
can be represented in the form given in Equation (3).
Leontaritis and Billings (1985) prove that nonlinear
input–output representations exist provided that the
system is finitely realizable, and a linearized model
would exist if the system were operated close to an
equilibrium point (Billings, 2013, Ch. 2). Based on these
results it has been demonstrated that many real systems
can be modeled using this representation (Billings, 2013;
Mu et al., 2005; Schoukens & Ljung, 2019), and in the
remaining of this paper, we assume that these conditions
for existence hold.

The process to build an input–output model is known
as system identification (Pillonetto et al., 2022; Södeström
& Stoica, 1989) and is composed of four main steps, which
we describe in some detail below. There is a very rich
literature on input–output modeling spanning several
decades, so we refer the interested reader to these more
detailed and formal treatments (Ljung, 1987; Schoukens &
Ljung, 2019; Södeström & Stoica, 1989). Our focus will be
on an experimental setting where the inputs are subject to
manipulation, the system's output can be measured, and
the resulting measured data is used to fit the model.

The steps to build the model are:
Step 0: determine the inputs and outputs of the

system. This requires prior knowledge of the system, and
commonly a hypothesis (e.g., that temperature has some
effect on sex determination). In an experimental set‐up,
the input will also be constrained by which variables can
be controlled, as well as how they can be controlled.
Multiple inputs can be measured and used for prediction
by including their delayed values in the prediction
Equation (3). Multiple outputs can be predicted by
building a separate predictive model following Equation
(3) for each output.

Step 1: collecting the data. Obtaining the
input–output measurements is a central step to identify
a model under this framework, since it is fully data‐
driven. Experiments should then be thoughtfully
designed to obtain data in the domain of interest,
introducing input signals that bring out the features of
the system that will be relevant for future predictions.
Such signals are known as “persistently‐exciting signals”
(Ljung, 1987). The sampling time for the measurements
of inputs and outputs is important and should be short
enough to capture the fastest temporal changes in the
measurements, but not any shorter to reduce computa-
tional costs (Ljung & Glad, 2016). There is no theoretical
justification to the minimal amount of data samples
needed to identify a model (Munch et al., 2022;
Schoukens & Ljung, 2019), since this amount will depend
on the dimensionality of the system, the types of
nonlinearities present and the quality of the data.

Step 2: choosing the model structure. This refers to
what we assume about the function F in Equation (3). If
we assume that the function F is linear, the model given
by Equation (3) is known as ARX (AutoRegressive with
eXogenous input). In these linear models, the output at
time i is a linear combination of the inputs and outputs at
previous times. However, we do not expect in general
that the organism–environment behavior will be cor-
rectly captured by a linear model, so we do not assume
that F in Equation (3) is linear. Note that if the true
dynamics of the system happen to be linear, a nonlinear
model will still provide good predictions if it has been
correctly fitted and validated (see below).

Step 3: fitting the model structure with the data.
Fitting the model means using the measured time‐series
data to determine the input–output relationships. Multi-
ple algorithms exist for this, including artificial neural
networks, Gaussian processes, and k‐nearest‐neighbor
algorithms (Billings, 2013; Friedman et al., 1977;
Schoukens & Ljung, 2019). For example, a neural
network can learn the relationship between input data
and output data through supervised learning (Mu
et al., 2005; Schoukens & Ljung, 2019). Particularly for
ecological data, k‐nearest‐neighbor algorithms have been
shown to provide good predictions within the EDM
framework (Munch et al., 2022; Sugihara et al., 2012).
These are nonparametric algorithms that predict the
value of new data points based on the values of their
closest neighbors in the data set used for fitting. The
number of regressors (i.e., nu and ny) required for
prediction will depend on the details of the system
including the number of internal states. Therefore, here
we suggest determining these numbers, together with the
hyper‐parameters of the algorithm used to fit the data,
through cross‐validation as explained below.

Step 4: model validation. Ultimately, we are inter-
ested in a model that predicts the behavior of the system,
so it is natural to use prediction error as a measure of the
usefulness of the model. Cross‐validation is a common
and practical tool for model validation that assesses how
well a model reproduces the behavior of new datasets not
used to fit the model. Given new input–output data, one
can compare the predicted output using the model and
input data against the actual observed output data, to
check if the models meet the desired use. The validation
typically consists of inspecting predictions plots as well
as measuring prediction error but can also include
other tests such as a whiteness test of residuals, cross‐
correlation test between input and output residuals or
higher order moments tests (Schoukens & Ljung, 2019).
If the model does not meet the user's requirements, then
aspects of the model need to be revised, including
number of regressors, the fitting algorithm, and the data
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collection. In this way, identification is an iterative
problem.

With a fitted and validated model, it is possible to
predict how the dynamical system will respond to new
input signals. These inputs can be different in terms of
magnitude or timing than the data used to fit the model.
Specifically, the model allows us to predict the output
y iˆ ( ) given information of y and u up to time i − 1. This is
known as the one‐step‐ahead predictor. The same model,
however, can be used recursively to predict the behavior
of the system for more steps, by using the predictions
y iˆ ( − 1), y iˆ ( − 2), … instead of y i y i( − 1), ( − 2), …. This
makes it possible to predict the complete trajectory of the
output ŷ (i.e., several timesteps ahead) under novel
experimental conditions (i.e., sequence of inputs) that are
not part of the set used for identification, given some
initial conditions.

2.3 | Application to phenotypic
plasticity

We use the general framework described in the previous
section to study how individuals modify their phenotype
in response to their environment (i.e., phenotypic
plasticity). Particularly, we show how the framework
allows us to study plasticity as a dynamical property, that
is, a property that changes in time during the develop-
ment and lifetime of the organism.

In our example, we have an organism inside a
bioreactor. The variables are summarized in Table 1. The
environmental state variable is the temperature inside
the perfectly mixed bioreactor, which is affected by the
temperature of fluid entering the bioreactor. This effect is
modeled as a first‐order differential equation, which
represents the fact that the temperature inside the
reactor will change gradually as fluid of a different
temperature enters (see equation in Figure 2a). The
organism is simulated as a gene regulatory network with
two genes (Gardner et al., 2000; see Figure 2a). Note that

this gene network is not trying to represent the biology of
any given “real” system, but rather it is used as a generic
representation of an agent with a dynamical behavior.
The states of the agent are the expression levels of the
two genes. Gene expression levels are also the outputs of
the system (i.e., the measurements we sample from the
system). The gene network has a parameter that is
affected by the temperature inside the bioreactor
(Figure 2a). The expression of gene 2 has an effect on
temperature (e.g., by generating heat), creating a two‐
way interaction between organism and environment as
represented in Figure 1a.

To study the system, we perform 10 in silico
experiments at constant input values. In such experi-
ments, we measure the output of the system in time (i.e.,
the gene expression for genes 1 and 2). We also have the
value of the input (i.e., the constant temperature of the
incoming fluid). Figure 2b shows the results of these
experiments, each plotted as a trajectory with arrows of
different colors in the gene 1–gene 2 plane (i.e., the state‐
space of the agent states). The arrows in this figure
represent the direction of change in the level of
expression for genes 1 and 2 at different time points of
the experiments. The results in Figure 2b shows that,
depending on the input temperature u, the system shows
two qualitatively distinct behaviors. For some input
values, the system goes to a state of high expression of
gene 1 and low expression of gene 2. For other values of
u, the system reaches a steady state with low expression
of gene 1 and high expression of gene 2.

We now turn to the goal of building a black‐box
input–output model to predict the behavior of the
system. Here, it is important to clarify the distinction
between the organism–environment system, here simu-
lated using the equations in Figure 2a, and the predictive
input–output model. The latter is built, as explained in
the previous section, only using input and output data
points and without a priori knowledge of the details of
the system (i.e., without knowledge of the equations in
Figure 2a).

TABLE 1 Definition of the variables
for the plasticity example.

General framework Plasticity example Symbols

States of the agent (xA) Gene expression of genes 1 and
2 G G( , )1 2

x G G= ( , )A 1 2

States of the environment (xE) Temperature in the reactor (T ) x T=E

Input (u) Temperature of incoming fluid (u) u u=

Output (y) Gene expression of genes 1 and
2 G G( , )1 2

y G G= ( , )1 2

Note: The table presents a summary of the variables as they appear in the description of the general
framework, along with specific definitions and symbols relevant to the plasticity example.
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As explained in the previous section, the first step to
build the model is to obtain the data. For this, we
perform 100 in silico simulations where the input is a
random walk with a fixed step size of 0.02 added or
subtracted every 10 sample intervals. Sample interval was
0.5 units of time, which was short enough to capture the
fastest dynamics of the system (see Supporting Informa-
tion: Figure 1). In practice, this means introducing fluid
at a constant temperature for 10 sample intervals, and
then changing the temperature of the fluid by an amount
of 0.02. This type of signal brings out all the relevant
features of the system (i.e., persistently‐exciting; see
Ljung, 1987).

For steps 2 and 3, we build a black‐box model as
shown in Equation (3) and use a k‐nearest‐neighbor
algorithm to fit the model (Friedman et al., 1977). The
algorithm works by first building a reference table of
the training data, where the input–output sequences
u i u i u i n y i y i y i n( − 1), ( − 2), …, ( − ), ( − 1), ( − 2), …, ( − )u y

are assigned the target value y i( ), following Equation (3).
To make predictions of new input–output data, the
algorithm searches the k most similar time sequences of
inputs and outputs in the training data and provides the
weighted average of the corresponding target values as
the predicted value for that time point. The measure of
“similarity” that we use to determine which are the
neighbors is Euclidean distance, but other metrics can be
used. The number of neighbors used for prediction (i.e.,
k) is a hyperparameter that needs to be defined by the
user and cross‐validated. Note that the algorithm is
analogous to “kernels” in machine learning and control
theory (Schoukens & Ljung, 2019).

The next step to build the model is the validation
process. For this, we try different values of nu, ny, and k

and find parameter combinations that yield the best
predictions for new test data. The prediction errors are
given in Supporting Information: Table 1. We found the
best performance in the validation data for n = 3u ,
n = 3y , and k = 3. This means that we have the recursive
expression,

ˆ ˆ
ˆ ˆ

y i F u i u i u i y i

y i y i j

( ) = ( ( − 1), ( − 2), ( − 3), ( − 1),

( − 2), ( − 3)),   = 1, 2,

j j j

j j

(4)

(a) (b)

FIGURE 2 An organism–environment system to study plasticity. (a) shows the gene network used in this study, where G1 and G2 are
genes 1 and 2, respectively (Gardner et al., 2000). The equations represent the dynamics of the system, including the change in the states of
the agent (i.e., the expression levelsG1 andG2) and the change in the state of the environment (i.e., the temperatureT ). The equations for the
change inG1 andG2 represent the gene network. The change in the temperature inside the bioreactor (T ) depends on the temperature of the
fluid entering the bioreactor (u) and the expression of gene 2 (G2). (b) shows the dynamics of the outputs for different constant inputs. In this
example, the outputs are also the states of the agent, namely the gene expression levels of genes 1 and 2.

where j indexes genes 1 and 2. The equation above
expresses that the output at time i (i.e., the expression
level of gene j at time i) is a function Fj of the inputs and
outputs at times i − 1, i − 2, and i − 3. Note that both
y i y iˆ ( − 1), ˆ ( − 2)j j , and y iˆ ( − 3)j are themselves a func-

tion of previous inputs and outputs. This means that we
can predict the complete trajectory several steps ahead of
the output y using the recursive expression (4). Finally,
k = 3 means that for each prediction, we average the
three data points in the training data that are closest to
the new data we want to predict.

We now use the fitted model to predict the trajectory
of the outputs for novel input signals. The first row of
Figure 3 shows the predicted trajectories for constant
input signals (i.e., where the input temperature is held
constant during the experiment after a short period of
zero input). As shown in the figure, despite constant
signals not being a part of the data set used to fit the
model, it is able to provide good predictions for the
trajectories of the outputs.

The previous simulations use a constant input.
However, one of the main strengths of the proposed
modeling framework is that it allows us to study

MILOCCO and ULLER | 7
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plasticity as a dynamical property. In this way, we can
study how a pulse of temperature affects the agent,
depending on the timing of that pulse. To study this, we
perform experiments in which the input temperature of
the fluid is raised for some time, and then lowered to its
basal value. In other words, the input signal is now a
function of time, in particular, a rectangle function.

When exploring this system, we see that depending
on the timing of the pulse, the effect on the agent will be
different. As shown in the second row of Figure 3, if the
pulse occurs early enough, the agent will go to a state
with high expression of gene 2 and low expression of
gene 1. However, if the pulse is done later, the agent
reaches the alternative state with low expression of gene
2 and high expression of gene 1. This highlights the
important dynamical properties of the system: it is not
only the magnitude, but also the timing of the perturba-
tion that will influence the behavior of the system. This is
a well‐known behavior of developmental systems, and
the period during which the system is responsive to
perturbation is commonly referred to as the critical or
sensitive window (Burggren, 2020; Crews, 1996; Fawcett
& Frankenhuis, 2015). As shown in Figure 3, the fitted

input–output model can predict the trajectory of the
outputs in time for these types of signals.

The modeling framework allows us to measure
plasticity as a dynamical property. The idea behind this
is that we can measure, at each time point, the number of
places where the system can be driven by modifying the
input. This gives us an idea of how “plastically
responsive” the system is at different time points.
Essentially, this involves predicting the system's behavior
for different constant inputs in a window of future time
that we refer to as the prediction horizon (see Figure 4a).
The variance of the predicted outputs at the end of the
prediction horizon measures the spread of final output
values that the system can be driven to by modifying the
input. If the output is some property of the agent (i.e., a
phenotype), this is a measure of phenotypic plasticity.
This idea is shown schematically in Figure 4b.

We test our dynamical measure of plasticity for the
expression of gene 2 in the example gene regulatory
network. We use a prediction horizon of 50 sample time
steps and test a series of constant input signals ranging
from −0.5 to 0.5 with step size of 0.02. Figure 4c shows
the variance of the distribution of outputs at the end of

FIGURE 3 Input–output modeling for phenotypic plasticity for constant and pulse inputs. Observed predicted outputs for different
input signals. The first row shows the outputs (i.e., expression of genes 1 and 2) in time for constant input signals (i.e., constant temperature
of the incoming fluid). The second row shows the outputs for a pulse signal of the input. Note that both constant and pulse signals are not
signals used in the training set (see Supporting Information: Figure 1 and main text).
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the prediction horizon for all constant inputs tried. It is
clear from this measure that the system is highly plastic
at the start of the experiment, but its ability to respond
to environmental inputs decreases toward the end.
This reflects the results shown before for the pulse

experiments, where the pulse could drive the system to a
new state only when introduced early in development.

The idea of predicting the future behavior of the
system at each time point can also be used to control the
system. This is the basis of model predictive control

(a)

(b) (c)

(d)

FIGURE 4 Using input–output modeling to measure plasticity dynamically in time and control the system. (a) illustrates a general
approach to measuring plasticity over time and controlling a system. Using the fitted predictive input–output model, the output variable can
be forecasted for different possible inputs at each time point, over a “prediction horizon.” In the diagram, a positive input value (represented
by dashed lines) drives the predicted output (gene 2, also in dashed lines) toward a higher value, while a negative input value drives the
predicted output toward values closer to 0 (both represented by corresponding dotted lines). Thus, if the objective is to drive the output to a
specific value (represented by dashed lines), a positive input value is chosen. This is the basis of model predictive control, which we use to
control the expression of gene 2 toward different objective values, as shown in Panel (d). (b) represents the idea behind the dynamic measure
of plasticity. At each time, different input values can be used to predict the various values that the output can be driven to in the prediction
horizon, shown as dashed lines. The variance of the predicted values at the end of the prediction horizon provides a measure of plasticity in
time. (c) illustrates this measure of plasticity in time for gene 2, indicating that it is higher in the early stages of development but decreases
over time.

MILOCCO and ULLER | 9
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(Camacho & Alba, 2013). Essentially, from the various
tested input sequences at a given time point, we can
identify the one that brings the system's output closest to
an objective state that we define a priori (see dashed line
in Figure 4a,d). We then apply the most effective control
input to the system and allow it to evolve to the next
sample point. The process is then repeated to calculate
the next most effective input for the system. We use this
idea and show that the expression of gene 2 can be
controlled by modifying the input in Figure 4d. The
figure shows how model predictive control allows to
drive the output to three different objective values
defined a priori, by deciding the most appropriate input
value at each time point. Note that to keep gene
expression at the objective value, the system must be
permanently excited by a non‐zero input.

3 | DISCUSSION

The framework we introduce combines desirable proper-
ties of both process‐based and statistical models. From
the first, it takes the dynamical description of the
organism–environment coupled system. From the sec-
ond, it takes the fact that these models can be fitted with
measured empirical data without detailed knowledge of
the internal causal interactions. Notably, the framework
proposed here is not in contradiction with the alter-
natives mentioned above. That is, a process‐based model
can be readily used to predict the output signal for a
given input signal. Furthermore, it is straightforward to
calculate the covariation structure of a set of outputs at a
given time point.

The framework proposed here can be interpreted as
machine learning for input–output relationships of an
organism–environment system. This means that the
objective is to learn the relationship between the output
at time i, y i( ), with delayed copies of the input and
output signals, that is y i y i( − 1), ( − 2), …, and
u i u i( − 1), ( − 2), … as given in Equation (3)

(Schoukens & Ljung, 2019). In this way, we do not
suggest learning a static relationship between a measure-
ment of the environment (e.g., a given temperature) and
a measurement of the organism (e.g., the adult pheno-
type). Instead, we suggest learning the dynamical
relationship between the inputs and outputs of the
system in time. This key distinction is what allows us to
model dynamical properties of the system.

Preserving the dynamical nature of the
organism–environment system is crucial as it accurately
represents the fact that the system has memory: past state
values affect current state values. This feature is
characteristic of any “generative” or “constructive”

process and is captured by the general Equation (3) of
the predictive framework. The co‐construction of the
organism and its environment at each moment in time
is fundamental to phenomena such as development,
plasticity, learned behavior, and niche construction. Here
we illustrate the use of this type of modeling for a simple
gene regulatory network, and its efficiency to model
more complex organism–environment systems is left as
an open question.

The framework proposed here makes it possible to
study plasticity as a dynamical property, a property that
changes in developmental time. Specifically, it allowed us
to define a dynamic measure of plasticity as the variance
of the possible values that the output can be driven to by
modifying inputs (Figure 4b,c). This is useful to detect
stages in development that are especially sensitive to
environmental effects. For the gene regulatory network
we study, we find that the system is particularly plastic in
earlier stages of development. The presence of sensitive
periods is well‐known in biology. The causes and
consequences of sensitive periods are of substantial
interest to both developmental and evolutionary biology,
which is well illustrated by the literature on temperature‐
dependent sex determination and other polyphenisms
(Nijhout, 2003), cognitive development in humans and
other animals (Frankenhuis & Walasek, 2020), and the
developmental origins of health and disease (Gluckman
& Hanson, 2004). The latter considers adult disease, and
the effectiveness of preventive intervention, to depend
heavily on the timing of environmental insult early in life
(Kuijper et al., 2019).

It is because plasticity is a dynamic property that such
phenomena are difficult to capture satisfactorily with a
representation of plasticity that does not incorporate
developmental time. This is often the case with reaction
norms, when used to study the relationship between an
environmental variable and the phenotype at a fixed stage
of an organism's lifetime (e.g., adult). A notable exception
explicitly incorporating ontogenic time is developmental
reaction norms (Pigliucci et al., 1996), which have also been
studied as types of function‐valued traits (Gomulkiewicz
et al., 2018). Bayesian models of development are a different
type of representation that is also able to capture certain
dynamical aspects of plasticity during development (Stamps
& Frankenhuis, 2016). Like the framework we propose,
these approaches are dynamic but suitable to address a
different set of questions. In particular, the framework
explained here provides a way to predict how the system
will respond to novel inputs and provides an opportunity to
control the output to a desired state (e.g., healthy). In this
way, while the dynamic approach explained here requires
more data to fit models when compared to static
descriptions, its potential applications suggest that the

10 | MILOCCO and ULLER

 1525142x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ede.12449 by D

uodecim
 M

edical Publications L
td, W

iley O
nline L

ibrary on [08/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



collection of such data will be worthwhile. Note that, while
preserving the dynamic aspect, the framework proposed
here makes its own set of simplifications about the
complexity of the biological system (e.g., arguably treating
the organism as a machine). However, the framework
provides a pragmatic tool that can be useful for certain
applications.

While black‐box modeling is uninformative about the
underlying biological mechanisms, causal interaction
among internal components of the black‐box can be
found under certain conditions. Sugihara et al., 2012 used
EDM—a type of black‐box modeling—to infer causal
relationships based on the predictability of a system's
dynamics. Briefly, the method tests for causation by
measuring the extent to which the historical record of one
state can reliably estimate another state, in which case the
first state causally influences the second. While these ideas
were mostly tested in the context of species interactions in
chaotic systems in an attractor, they can be extended to
the systems studied here if internal states can be
measured, to study causal interactions among organism
and environment states. Making data‐driven methods
more interpretable is currently an active field of research,
and recent efforts also exist to reconstruct the state‐space
equations directly from measured time‐series data (e.g.,
sparse identification of nonlinear dynamics algorithm,
SINDy; Brunton & Kutz, 2022; Brunton et al., 2016). While
these methods are currently limited in the dimensionality
of the systems they can be applied to, they represent a
promising venue for discovering the underlying equations
of the coupled organism–environment system.

The ability of organisms to modify their development
in changing environments is fundamental to many key
questions in evolutionary developmental biology and
ecology (Gilbert et al., 2015). However, such questions
cannot be adequately studied with models that do not
capture the dynamical nature of the interaction between
the organism and environment. Therefore, despite the
challenge this implies, it should be a central objective to
develop modeling frameworks that correctly represent the
organism–environment system and can be fitted with data.
The framework presented here is a step in this direction.
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