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Abstract1

Understanding, predicting, and controlling the phenotypic consequences of genetic and environmen-2

tal change is essential to many areas of fundamental and applied biology. In evolutionary biology,3

the generative process of development is a major source of organismal evolvability that constrains4

or facilitates adaptive change by shaping the distribution of phenotypic variation that selection can5

act upon. While the complex interactions between genetic and environmental factors during devel-6

opment may appear to make it impossible to infer the consequences of perturbations, the persistent7

observation that many perturbations result in similar phenotypes indicates that there is a logic to8

what variation is generated. Here, we show that a general representation of development as a dy-9

namical system can reveal this logic. We build a framework that allows to predict the phenotypic10

effects of perturbations, and conditions for when the effects of perturbations of different origin are11

concordant. We find that this concordance is explained by two generic features of development,12

namely the dynamical dependence of the phenotype on itself and the fact that all perturbations13

must be funneled by the same developmental process. We apply our theoretical results to classi-14

cal models of development and show that it can be used to predict the evolutionary response to15

selection using information of plasticity, and to accelerate evolution in a desired direction. The16

framework we introduce provides a way to quantitatively interchange perturbations, opening a new17

avenue of perturbation design to control the generation of variation, and thus evolution.18
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Introduction19

A complete theory of organismal evolution requires a theory of phenotypic variation, a theory of20

natural selection, and a theory of heredity. While tremendous advances have been made in the last21

century to understand the two latter pillars of Darwinian evolution, a theory for the generation of22

phenotypic variation remains elusive.23

The process that generates variation in morphology, physiology, and behavior is known as24

development in the broad sense (Gilbert and Barresi 2016). Notoriously complex and non-linear25

interactions between genes, cells, tissues and environmental factors during development make it26

difficult to grasp the phenotypic consequences of genetic and environmental perturbations. Indeed,27

the diversity and complexity of developmental systems could be taken as evidence that a priori28

inference of the consequences of perturbations rarely will be feasible. A pessimistic conclusion is29

therefore that the best one could hope for is to demonstrate that generative processes in principle30

can impact evolutionary trajectories (Rice 2002, Morrissey 2015, Gonzalez-Forero 2023), while31

studies that demonstrate how development affects evolution will remain a collection of idiosyncratic32

case studies (Beldade et al. 2002, Brakefield 2006, Galis et. al 2010). This perception that33

generative processes are intrinsically unpredictable, and that selection is the only reliable force in34

evolution is also reflected in biotechnology and medicine, where attempts to direct evolutionary35

processes emphasize control over selective regimes rather than control over generative processes.36

In this paper, we provide a more optimistic perspective by addressing a particular problem37

concerning the generation of variation, and its implications for evolution: the relationship between38

the phenotypic effects of genetic and environmental perturbation. Genetic and environmental39

effects on phenotypic variation have often been considered independent, as implicitly assumed when40

environmental effects are modelled as the uncorrelated residuals of a linear regression of phenotype41

on genotype in quantitative genetics (Lynch and Walsh 1998). However, since both genetic and42

environmental perturbations are channeled through the same developmental system, it is unlikely43

that this assumption generally holds true (Cheverud 1988, West-Eberhard 2003). It is indeed well44

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2023. ; https://doi.org/10.1101/2023.11.03.565446doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.03.565446
http://creativecommons.org/licenses/by-nc-nd/4.0/


known that environmental change occasionally induces phenotypes that resemble genetic mutants45

(e.g., melanism in butterflies, Nijhout 1984) and it has been shown that plastic responses are biased46

towards phenotype dimensions with high additive genetic variation (Noble et al. 2019), but the47

existing body of work is mostly a collection of empirical observations.48

If genes and environments are equivalent, or interchangeable, as sources of phenotypic variation,49

this could have important consequences for understanding and predicting evolution, and eventually50

controling it. In particular, gene-environment interchangeability implies that there is a formal con-51

nection between evolvability and plasticity. Evolvability can be defined as the capacity to generate52

phenotypic variation in response to genotypic variation (Kirschner and Gerhart 1998), while plas-53

ticity refers to the same capacity for phenotypic variation in response to environmental variation.54

If genetic and environmental perturbations are interchangeable, the evolution of plasticity may55

shape evolvability and vice versa, and information of one can reveal features of the other (Chevin56

et al. 2022). Previous theoretical work has suggested that such a relationship between plasticity57

and evolvability does exist (Wagner and Altenberg 1996, Ancel and Fontana 2000, Espinosa-Soto58

et al. 2011, Draghi and Whitlock 2012, Furusawa and Kaneko 2015, van Gestel and Weissing 2016,59

Brun-Usan et al. 2021), but there is no general framework to explicitly define the conditions for60

when this relationship should be expected, or to study its evolutionary implications. Such under-61

standing would enable the design combinations of perturbations to drive the developmental system62

to a desired state, thus controlling the generation of variation.63

The aim of this paper is to introduce a conceptual framework to understand when genetic and64

environmental perturbation will cause shifts in phenotype in similar directions in trait space. We65

illustrate this phenomenon of alignment using in silico experiments of reaction diffusion models and66

gene regulatory networks. We show how the theory can be used (i) to predict the concordance of67

phenotypic effects of perturbations of different origins, (ii) to estimate the effects of mutations on the68

phenotype, (iii) to infer evolvability using information of plasticity, and (iv) to accelerate evolution69

in a desired direction. This ability to convert information from plastic responses into information70

about evolutionary potential, and vice versa, could have applications in diverse areas concerned71
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with the phenotype, including developing solutions to environmental and societal challenges using72

biotechnological engineering.73

Results74

The results are presented in sections. First, we introduce a general representation of development75

as a dynamical system. Second, we develop the formalism to study the phenotypic effect of a76

single perturbation. Third, we study the alignment between perturbations of different origins (e.g.,77

genetic and environmental). Finally, we apply the theoretical framework to classical models of78

development, namely reaction-diffusion models and gene regulatory networks, and show how it can79

be used for evolutionary understanding, prediction and even control.80

A general representation of development as a dynamical system81

Mathematical models of development usually consist of a representation of the phenotype and a82

set of rules of how this phenotype changes through developmental time, for example, through the83

interaction among different components of the system. Examples of such models include reaction-84

diffusion models (e.g., Kondo and Miura 2010), gene regulatory networks (e.g., Wagner 1994),85

and models of morphogenesis (e.g., Salazar-Ciudad and Jernvall 2010). These models are com-86

monly given mathematically as differential equations which are numerically integrated over time to87

simulate a developmental trajectory, which is the change in the phenotypic values through devel-88

opmental time. Following this body of work (Lewontin 1983, Alberch 1991), we take the general89

representation of development given by:90

ẋ = f(t,x,λ), x(t0) = x0 (1)91

where x = (x1, x2, ..., xn) is a vector composed of n variables that we refer to as states, with each92

state xi representing a different aspect of the phenotypes that is relevant to describe the systems93

behavior through developmental time (e.g., the expression level of a given gene); ẋ is the time94
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derivative of x, which gives the temporal change in the states; t is developmental time; f is a95

developmental function determining the rules of how the states change in time; x0 are the state96

values at initial time t0, known as the initial conditions; and λ = (λ1, λ2, ..., λp) are developmental97

parameters, which can be genetic or environmental (e.g., the affinity of a cofactor modulating98

downstream gene expression, or temperature during developmental time).99

Equation (1) captures two central properties of development which will be important to derive100

the results presented later. The first of these central aspects is that development depends at each101

step on the preexisting phenotype. This is mathematically captured by the fact that the change in102

the states at each time, given by ẋ, is itself a function of the states x at that time. This means that103

the phenotype at any given time is both the effect of earlier and the cause of later developmental104

changes. This feedback of the phenotype on itself makes development a dynamical phenomenon105

rather than a static one (or historical rather than programmatic, Stent 1985, West-Eberhard 2003),106

where the ways in which the phenotype can and cannot change at a given time depend on the state107

of the phenotype at that time. Examples of this historicity of development include the sequential108

determination of cell fate (Bassett and Wallace 2012) and sensitivity windows, where the same109

perturbation results in a phenotypic effect only for responsive phenotypes at specific times during110

development (Burggren and Mueller 2015).111

The second important aspect of development highlighted by equation (1) is that changes in any112

of the developmental parameters λ have an effect on the states x through the same function f .113

In other words, any perturbation in the developmental parameters has to be channeled through114

the same developmental pathways to result in a change in the states. As we show below, this115

funneling (Cheverud 1988, West-Eberhard 2003) is fundamental for the alignment of the effects of116

perturbations with different origins.117

The effect of a perturbation on one developmental parameter118

We are interested in studying how a given developmental trajectory is affected by a perturbation119

in one of the developmental parameters. We begin with a system with a single developmental120
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parameter (i.e., λ = λ), and we extend the results to multiple parameters later. Further, we will121

assume that the developmental function f is smooth, having continuous fist partial derivatives.122

The study of perturbations is always comparative: perturbations must be studied with respect to123

an unperturbed reference. We thus need to define a reference developmental trajectory from which124

to study deviations from. We define λ∗ as the reference value for the developmental parameter (i.e.,125

corresponding to an organism with the wild-type genotype in standard environmental conditions).126

The developmental trajectory of the reference, unpertubed developmental system is thus given as127

the unique solution of equation (1) for λ = λ∗, which we denote x(t, λ∗), as shown in Figure 1.128

We are interested in the direction in which the reference developmental trajectory will change129

when we introduce a small perturbation to λ∗. This type of study is knows as sensitivity analysis130

in dynamical systems theory (Khalil 2002). The direction of change is given by131

sλ(t) =
∂x(t, λ)

∂λ

∣∣∣∣∣
(t,λ∗)

(2)132

The vector sλ(t) is known as the sensitivity vector (or function, Khalil 2002), and it is a vector of133

length n containing the partial derivatives of the states x1, x2, . . . , xn with respect to the parameter134

λ, evaluated at the reference value λ∗ and at time t. This vector then tells us how we expect135

the states to change for a small change in the developmental parameter at each time t. For small136

perturbations, we can predict the perturbed developmental trajectory using:137

x(t, λ) ≈ x(t, λ∗) + sλ(t)(λ− λ∗), (3)138

which tells us that the perturbed developmental trajectory x(t, λ) will differ from the reference,139

unperturbed trajectory x(t, λ∗) by an amount proportional to the difference λ− λ0, with direction140

determined by the vector sλ(t). Equation (3) resembles a first order Taylor approximation, and is141

only locally valid (i.e., for values of λ close to λ∗).142

Calculating sλ(t) is not straight-forward since we do not know the explicit relationship between143

the states x and the parameter λ. We show in Appendix A (see also Khalil 2002) that sλ(t) can be144
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obtained as the the unique solution to145

ṡλ(t) = A(t, λ∗)sλ(t) + bλ(t, λ
∗), sλ(t0) = 0

A(t, λ∗) =
∂f(t,x, λ)

∂x

∣∣∣∣∣
x(t,λ∗)

, bλ(t, λ
∗) =

∂f(t,x, λ)

∂λ

∣∣∣∣∣
x(t,λ∗)

(4)146

The matrix A(t, λ∗) is known as the Jacobian matrix and summarizes the relationship between147

f and x. Note that this Jacobian does not depend on what parameter λ is perturbed. The148

relationship between f and λ is captured by the vector bλ(t, λ
∗). In this way, if we know the149

function f , then we can calculate A(t, λ∗) and bλ(t, λ
∗), and jointly solve numerically equations (1)150

and (4) to obtain sλ(t), which is the vector of interest.151

Under the assumption that the Jacobian is invertible, we can get the simplified expression152

sλ(t) = A−1(t, λ∗) (ṡλ(t)− bλ(t, λ
∗))︸ ︷︷ ︸

b̃λ(t,λ∗)

= col1(A
−1)b̃λ,1 + col2(A

−1)b̃λ,2 + · · ·+ coln(A
−1)b̃λ,n

(5)153

where coli(A
−1) is the i-th column of A−1(t, λ∗) and b̃λ,i is the i-th element of vector b̃λ. This154

means that the sensitivity vector at a given time sλ(t) can be expressed as a linear combination155

of the columns of A−1(t, λ∗) with weights determined by the elements of b̃λ(t, λ
∗). This result is156

shown graphically in Figure 1, and provides a basis to study alignment as explained in the next157

section. Note that b̃λ(t, λ
∗) reduces to bλ(t, λ

∗) if ∥bλ(t, λ∗)∥ ≫ ∥ṡλ(t)∥, which is the case for an158

organisms that has reached steady state (e.g., adulthood).159
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Figure 1: A general framework to study the phenotypic effects of perturbations of different
origins. On top, the reference developmental trajectory x(t, λ∗) in black and the perturbed trajectory
x(t, λ) in purple through developmental time t. The panel in the middle shows that, at any given time,
the effect of the perturbation on the trajectory, given by the sensitivity vector sλ(t) is a linear combination
of the columns of the matrix A−1(t, λ∗). The three panels at the bottom show the sensitivity vectors for
different perturbations at a given developmental time are linear combinations of the columns of the same
A−1. sλ1 and sλ2 are largely aligned, but not sλ3 .

160
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Alignment between the effects of perturbations of different origin161

We now use the formalism introduced above to study the relationship between the phenotypic effects162

of perturbations of different origins. Given two developmental parameters, we say that their effects163

are totally aligned if the associated sensitivity vectors have an angle of 0◦, meaning that the two164

perturbations result in phenotypic changes in exactly the same direction. More generally, we say165

that there is evidence of alignment if the two sensitivity vectors have an angle that is significantly166

smaller, at a given confidence level, than the distribution of angles between independent random167

vectors of the same dimension.168

Figure 1 gives an example for three developmental parameters λ1, λ2 and λ3, which can cor-169

respond for example to the affinity of a cofactor modulating gene expression (genetic parameter),170

temperature and salinity (environmental parameters), respectively. The effects of modifying each of171

those parameters at time t is given by the vectors sλ1(t), sλ2(t) and sλ3(t), and the angles between172

them determine alignment. From equation (5), we know that all of these sensitivity vectors can be173

written as a linear combinations of the columns of the same matrix, the Jacobian A−1(t,λ∗), where174

each column is weighted by the elements of b̃λ (note that we omit the arguments (t, λ∗) when it is175

clear from context for readability). This provides sufficient conditions for alignment between the176

effects of different perturbations; if two perturbations have a dominant component in the direction177

of one of the columns of A−1(t,λ∗) (i.e., b̃λ,i ≫ b̃λ,j for all j ̸= i), then these perturbations will be178

aligned.179

The illustrative example in Figure 1 shows that sλ1(t) and sλ2(t) are largely aligned because180

they both have a large component in the direction of the first column and a small component in the181

direction of the second column of the Jacobian (i.e., b̃λ1,1 ≫ b̃λ1,2 and b̃λ2,1 ≫ b̃λ2,2). sλ3(t) is not182

aligned with the other two vectors, since it has a large component in the second rather than first183

column (i.e., b̃λ3,2 ≫ b̃λ3,1). We note that this sufficient condition is not necessary for alignment.184

Indeed, there can be alignment according to our definition even if weights are not proportional185

when the Jacobian has columns that are similar to each other.186
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The two components of the sensitivity vectors, namely A−1(t,λ∗) and b̃λ,i, are related to the two187

key aspects of development highlighted by equation (1). The first of these aspects – the historicity188

of development – is related to matrix A−1(t,λ∗), the inverse of the Jacobian which summarizes the189

relationship between f and x. This matrix determines the structure for phenotypic changes, since190

its columns provide the directions in which the phenotype is able to respond to a perturbation.191

These directions are independent of the nature of the perturbation itself and are determined by the192

capabilities of the responsive phenotype at that time. The second relevant aspect of development193

highlighted by equation (1) is the fact that all perturbations are funneled by the same developmental194

function f . This is related to the other component of the sensitivity vector, the weights b̃λ,i. These195

weights summarize the relationship between f and λ. If two developmental parameters affect the196

same aspects of f , then there will be alignment. However, if two parameters affect distinct aspects197

of f (e.g., they affect two different developmental modules) then we should not expect alignment198

in general.199

In the next sections, we apply this general framework to well-known models of development,200

and use it to make evolutionary prediction and control.201

Alignment in a reaction-diffusion model202

Reaction–diffusion models are a set of models of pattern-formation that have been widely used203

to represent diverse developmental processes, including digit formation and hair follicle placement204

(Turing 1952, Sick et al. 2006, Kondo and Miura 2010, Green and Sharpe 2015). These models con-205

sist of a physical representation of the tissue and a set of molecules called morphogens. Morphogens206

diffuse and interact within the tissue, leading to the emergence of patterns as they accumulate in207

specific spatial regions. Here, we will use one of these reaction-diffusion models known as the Gray-208

Scott model (Gray and Scott 1990) to illustrate how we can study the alignment of phenotypic209

effects of different origin using the framework introduced in the previous sections.210
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The developmental function f for the Gray-Scott model is given by211

ẋ1 = D1∇2x1 − x1x
2
2 + F (1− x1),

ẋ2 = D2∇2x2 + x1x
2
2 − (F + k)x2

(6)212

where x1 and x2 are the cellular concentrations of morphogen 1 and 2, respectively, D1 and D2 are213

their diffusion rates to neighboring cells, ∇2 is the Laplacian operator, F is the production rate214

of morphogen 1, and k is the rate of degradation of morphogen 2. We will study the alignment215

between the phenotypic effects of perturbing the developmental parameters k and F .216

We represent a portion of embryonic tissue as a grid of 50× 50 cells (details of the simulations217

are given in Materials and Methods). In each of these cells there is a given amount of the two218

morphogens, so the total number of states in the system is 50 × 50 × 2 = 5000. Diffusion of the219

morphogens occurs between neighboring cells. The simulation is done for a window of time of220

t = 5000 × h where h = 0.1 is the integration step. We start from initial conditions shown in221

Supplementary Figure 1, and use the reference parameters values D∗
1 = 0.32, D∗

2 = 0.06, k∗ = 0.06222

and F ∗ = 0.032. We calculate sk(t) and sF (t) by jointly integrating equation (4).223

Figure 2 shows that the angle between sk(t) and sF (t) remains around 50◦. This means that224

sk(t) and sF (t) are partially aligned, since this angle is significantly smaller than the angle between225

random vectors of the dimension of the sensitivity vectors, which is 90◦. This implies that the226

phenotypic effects of perturbing k and F should be similar.227

We test the analytical prediction of alignment by simulating perturbed systems. We run228

simulations with small perturbations in the developmental parameters (i.e., k = k∗ + ∆k and229

F = F ∗ +∆F ), and compare the resulting phenotypes. Figure 2 shows that the phenotypic effects230

of either a decrease in k or an increase in F are largely aligned, resulting in the formation of con-231

nected dots rather than dots as in the reference, unperturbed phenotype. Note that since the angle232

between sk(t) and sF (t) is not 0
◦, we should not expect the perturbed phenotypes to be identical.233
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Figure 2: Alignment in a reaction-diffusion model. The panel on the left shows in purple the angle
between sF (t) and sk(t) through development time, and in orange the average angle between sk(t) and 10
random vectors of the same dimension (one standard deviation is also plotted but covered by the dots). The
angle between sF and sk is significantly smaller that the angle between random vectors, indicating alignment
between the phenotypic effects of perturbing k and F . The three panels to the right show the phenotypes,
plotted as the concentration of morphogen 1 with higher concentration in lighter color, for the reference
developmental parameters, perturbed k and F , respectively, at developmental time 500. As indicated by the
small angle between sF and sk, the phenotypic effect of the perturbations is similar, resulting in connected
dots as opposed to the dotted pattern in the reference.

234

Alignment in a gene regulatory network235

We now use the general framework to study the alignment between the phenotypic effects of per-236

turbation with different origins in a gene regulatory network. In this section, we derive analytical237

results and test them using simulations. In the next section, we use the knowledge of alignment to238

connect plasticity and evolvability.239

We use a common representation of gene regulatory networks found in the literature (Wagner240

1994, Draghi and Whitlock 2012, Brun-Usan et al. 2021), where the states are given by x =241

(x1, x2, . . . , xn) representing the expression levels of n transcription factors that regulate each other’s242

expression. The function f giving the change in the states during development for this example is243

ẋi =
r(hi)

Ki + r(hi)
− µixi, with hi =

n∑
j=1

θijxj + ui, i = 1, 2, . . . , n (7)244

where θij is the ij-th element of the matrix Θ, and gives the regulatory effect of gene j on the245

expression of gene i (i.e., θij > 0, θij < 0 and θij = 0 represent activation, inhibition and no246

interaction, respectively). The expression of each gene can also be activated or inhibited by envi-247
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ronmental inputs u = (u1, u2, . . . , un). Gene expression follows Michaelis-Menten dynamics with248

coefficients Ki, and gene product has a degradation rate given by µi. In this way, the developmen-249

tal parameters in this example are θij , ui, Ki and µi for all i, j = 1, 2, . . . , n. For the analyses in250

this section and the next using the gene-regulatory network, we study the steady state, which we251

consider maturity of the organism, where gene expression is no longer changing (i.e., ẋi = 0 for all252

i). We use a bar to denote that a variable corresponds to the steady state (i.e., Ā is the Jacobian253

at the steady state).254

In Appendix B, we obtain the Jacobian Ā and the weights b̄λ, for each of the developmental255

parameters, and use them to calculate the sensitivity vector using equation (5). We find that for256

a given i, the sensitivity vectors s̄θij , s̄ui , s̄Ki and s̄µi are always aligned (i.e., regardless of j)257

since the weight vectors b̄ all have a non-zero value in the i-th position, and zeroes elsewhere. This258

means that, for example, a perturbation in the environmental input ui will result in a phenotypic259

change that is in the same direction as a genetic change in any of the elements of the i-th row of260

Θ. In particular, this phenotypic effect will occur in the direction of vector coliĀ
−1.261

We test the analytical predictions by simulating gene networks of 5 genes and initial concen-262

trations of 0.1 for all genes. We begin by using the sensitivity vectors to predict the phenotypic263

effects of mutations, which are changes in the elements of the interaction matrix Θ. For this, we264

generate 100 random gene regulatory networks each with a different reference interaction matrix265

Θ∗
k. For each network k, we generate 20 mutants by modifying one element of Θ∗

k. We predict the266

effect of these mutations using equation (3) as x̄∗ + s̄θij (θij − θ∗ij), where x̄∗ is the steady state of267

the unperturbed system and s̄θij is as obtained in Appendix B. We then compare this prediction268

with the actual simulated steady state for the mutants.269
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Figure 3: The general framework predicts the effects of mutatations and alignment with
environmental perturbations. Panel a. shows the prediction error for the effect of a mutation using the
sensitivity vector. The x-axis has the perturbation relative perturbation size (θij−θ∗ij)/θ

∗
ij . The relative error

was calculated as the difference between predicted change using sensitivity vector and the simulated change,
divided by the simulated change. 100 random networks were used as reference and 20 mutants were generated
for each reference network. Panel b. shows the alignment between genetic and environmental perturbations
in θ1,j and u1 for random j in 1, 2..., 5. The angle between the resulting changes was measured in degrees
and plotted as a histogram in purple. Data includes 100 reference networks, each with 20 environmental
and 20 genetic perturbations introduced. Orange histogram shows the angle between random vectors in
5-dimensional morphospace.

270

Figure 3.a. shows that the formalism based on sensitivity vectors predicts the effect of mutations271

on the phenotype. As expected, the error in the prediction goes to zero as the perturbations become272

smaller. Perturbations smaller than 20% in the parameters have median relative error smaller than273

3% in the prediction of their phenotypic effect. The predictions for this class of network is robust274

to larger perturbation, with perturbations in the range of 80-100% in the parameters still resulting275

in predictions with less than 30% median error.276

We now turn to the question of alignment between different sources of perturbation. From277

the results in Appendix B, we know that the sensitivity vectors s̄ui and s̄θij are aligned for any278

given i, and for all j. This means that perturbing the environmental parameter ui or perturbing279

any of the elements in the i-th row of Θ will result in changes in the phenotypes in the same280

direction. To test this, we generated 100 random reference networks. For each of these reference281

networks, we introduced genetic and environmental perturbations, in the first row of the reference282
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Θ∗ and in u1, respectively. We then simulated the networks until the steady state was reached,283

and measured the angles between the phenotypic effects of different origins. Figure 3.b. shows that284

the angles between the vectors resulting from these perturbations are significantly smaller than285

the angles between random vectors. This confirms that the phenotypic effects of these genetic and286

environmental perturbations are aligned.287

Plasticity and evolvability288

The alignment between the phenotypic effects of genetic and environmental perturbations provides a289

link between plasticity and evolvability. Indeed, the plastic response of organisms to environmental290

change can be used to infer what variation can arise through heritable genetic changes, and thus291

what variation can selection act on.292

To study this, we use populations of individuals represented by gene regulatory networks of 5293

genes, where only genes 1 and 2 receive environmental input (i.e., u3 = u4 = u5 = 0). We have two294

sets of 15 populations each that we call up-down and left-right sets, which differ in how organisms295

respond plastically to environmental perturbation. Figure 4.a shows one example population from296

the up-down set in black, and one example population from the left-right population in orange. The297

dots represent the steady-states of the phenotypes for the individuals when no environmental input298

is introduced. The arrows have their origin in these unperturbed reference states, and point in the299

direction of change when environmental perturbations are introduced. The population plotted in300

black show large changes in x4 (i.e., the expression level of gene 4) in response to environmental301

perturbations, but little change in x3. The opposite applies to the orange population, which mostly302

varies in x3 when environmental perturbations are introduced. Details of how the population sets303

were generated are given in Materials and Methods.304

Because we know from the analytical results above that the response to environmental perturba-305

tions is aligned with the response to genetic perturbations, we predict that the left-right populations306

should evolve faster, compared to the up-down populations, if selected in the direction of increase307

in x3 and no change in x4. We test this by making the populations evolve “to the right”, towards308
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an optimum in (x3, x4) = (12.5, 7.5). To avoid confounding effects of standing genetic variation,309

we sampled 25 random individuals from each of the 30 populations (15 left-right and 15 up-down),310

and created independent evolutionary lines from 1000 clones of those randomly sampled individuals311

(i.e., total of 2 × 15 × 25 = 750 independent evolutionary simulations starting from 1000 clones312

each).313

Panel 4.b confirms that the individuals from the left-right populations are consistently faster at314

evolving “towards the right”, to an optimum in (x3, x4) = (12.5, 7.5), compared to the individuals315

from the up-down populations. The 15 transparent orange lines correspond to the average of316

the 25 simulations from each of the 15 left-right populations. Similarly, the transparent black lines317

represent the averages from the 15 up-down populations. Total averages are given with fully opaque318

colors.319

For this particular system, we can further use the sensitivity vectors discovered in the previous320

section to accelerate evolution in a desired direction. From the analytical results, and as confirmed321

with the simulations (Figure 3.b.), we know that the i-th environmental input will be aligned with322

mutations in the i-th row of Θ. Furthermore, we know that the plastic response shown in Figure323

4.a. is generated by perturbation in u1 and u2. Therefore, we know that evolution in the desired324

direction can be accelerated by increasing the mutation rate of the first two rows of Θ.325

Figure 4.c shows a scenario in which additional mutations are introduced in each generation,326

but only on the first two rows of Θ. For individuals in set left-right, many of these mutations will327

be beneficial since they will be aligned with the plastic response, which itself points towards the328

optimum at (x3, x4) = (12.5, 7.5), as shown in Figure 4.a. This results in a marked acceleration of329

evolution towards the optimum (compare orange lines is panels b and c of Figure 4). Populations330

from the set up-down, however, cannot benefit from this additional mutational input since we331

know from Figure 3.c. that mutations in the first two rows of Θ result in phenotypic changes that332

do not point towards the optimum for the up-down populations. Supplementary Figure 2 shows333

that, analogously, the up-down populations out-compete the left-right populations if selection is334

“upwards”, towards an optimum in (x3, x4) = (7.5, 12.5), and that evolution is accelerated in this335
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direction if we increase the mutational input in the first two rows of Θ for the up-down, but not336

the left-right population.337

Figure 4: Plasticity predicts evolvability and this can be used for evolutionary control. Panel
a. shows an example population of the left-right and up-down sets, in orange and black respectively. Dots
represent unperturbed individuals (no environmental inputs), and the arrows represent the direction of the
change in steady states when an environmental perturbation is introduced in one of the first two states.
Panel b. shows evolution for left-right and up-down populations, towards an optimum located in (x3, x4) =
(12.5, 7.5) represented with the purple arrow. The left-right populations, in orange, out-compete the up-
down. Transparent lines are the average among the 25 evolutionary lines initiated from a single individual
from each of the 15 populations in each set. Panel c. shows that an additional mutational input directly on
the first two rows of Θ significantly accelerates evolution towards the optimum for the left-right populations.

338

Discussion339

In this work, we demonstrate that representing development as a dynamical system provides a340

theoretical framework to study how generative processes create phenotypic variation, and thus341

constrain or facilitate adaptive change. This general representation of development captures two342

general features of generative processes that are lost in static representations that only focus on343

the outcome of development, but not on how that outcome is constructed (e.g., static maps from344

genotypes and environments to adult phenotypes). The first property is historicity, which means345

that the phenotype at any given time is both the effect of earlier, and the cause of later, develop-346

mental change. The second property is that all perturbations are ultimately funneled by the same347

developmental process. These two generic features of development are reflected in the elements of348

the sensitivity vectors, which determine how the phenotype is expected to change as a result of a349
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perturbation during development.350

A benefit of this representation of development as a dynamical system is that it establishes351

a formal connection between plasticity and evolvability, understood as the capacity to generate352

phenotypic variation in response to perturbations of environmental or genetic origin, respectively.353

The existence of theoretical conditions for when genetic and environmental perturbations result in354

concordant phenotypic effects indicates that both phenomena ought to be more broadly concep-355

tualized as variational properties that reflect the internal structure of the developmental process356

(Wagner and Altenberg 1996, Salazar-Ciudad 2006). This conceptualization has important impli-357

cations for evolutionary prediction and control, since it suggests that information of plasticity can358

reveal salient aspects of evolvability, and vice versa. While this link between plasticity and evolv-359

ability has been demonstrated before in specific models (Ancel and Fontana 2000, Espinosa-Soto360

et al. 2011, Draghi and Whitlock 2012, van Gestel and Weissing 2016, Brun-Usan et al. 2021), the361

framework presented here extends this understanding in multiple ways.362

First, the general framework based on sensitivity functions allows defining explicit theoretical363

conditions for when plasticity and evolvability should be aligned. These conditions are general364

and apply to any system of the general form of equation (1), since they are derived from generic365

features of development represented as a process. Due to their generality, these conditions open366

the possibility to scale these results for application in evolutionary prediction and control in diverse367

systems. Importantly, these conditions apply to any point during development and are not con-368

strained to be applied to the adult. This can be important if, for example, selection occurs during369

development. A limitation for applying this framework to phenotypic variation in nature is that370

the developmental function f needs to be known to calculate matrix A(t) and vector b(t). Note371

however that even if we cannot obtain explicit analytical values for these elements, the general372

conclusions of the framework still apply. Furthermore, there is potential to estimate the sensitivity373

functions directly from data when the developmental function is not known (e.g., by analyzing the374

phenotypic consequences of experimental perturbations, Milocco and Uller 2023).375

Second, the framework makes it possible to go beyond the qualitative expectation that genetic376
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and environmental perturbations are interchangeable in development (e.g., Cheverud 1982, 1988;377

West-Eberhard 2003), by making quantitative predictions of the phenotypic effect of perturbation,378

and of the relationship between different perturbations. As shown in this paper, this information379

can be exploited to predict responses to selection without an estimate of heritable (co)variance380

in phenotypes (e.g., as summarized in the G matrix). This is possible because knowledge about381

plasticity captures properties of developmental systems that carries information about how those382

systems can accumulate heritable phenotypic variation. While some empirical data (e.g., Noble et383

al. 2019) could be interpreted in this manner, there appears to be no direct test of this prediction.384

Note, however, that the framework introduced here is only locally valid, meaning that it is predictive385

of the effects of perturbations of small size. Therefore, predictions of evolvability based on plasticity386

may only be valid for a limited number of generations after which the sensitivity functions would387

have to be re-identified since the internal structure of development may have changed.388

Finally, the framework reveals how to exploit this alignment for evolutionary control, by accel-389

erating evolution in certain directions through forced mutations predicted to result in adaptive phe-390

notypic changes. More generally, if the sensitivity vectors of multiple perturbations are identified,391

this means that it is possible to design combinations of perturbations to drive the developmental392

process in a desired direction. Similar to the other points above, this insight suggests opportunities393

for empirical investigation of evolvability, which also may have implications in applied fields of394

biology such as biotechnology.395

While so far we have emphasized the alignment between the phenotypic effects of genetic and396

environmental perturbations, different genetic perturbations can also be aligned with each other397

(Pitchers et al. 2019). In the simulations, this redundancy is evidenced by the fact that mutating398

any element of the i-th row of Θ in the gene regulatory network or mutating any of the parameters399

k or F in the reaction-diffusion model, generates concordant phenotypic change. In this way, a400

population will evolve in the same direction of trait space by accumulating mutations in any of401

those equivalent elements. This redundancy can explain why genetic changes underlying parallel402

evolution often fail to be replicated (e.g., Pelletier et al. 2023), since multiple changes at the genetic403
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level can explain the same phenotypic adaptations.404

Redundancy ultimately reflects the fact that it is not the identity of any specific gene that405

matters for the generation of phenotypic variation, but rather the role it plays in the dynamics of406

the developmental process. This can explain the observation that, despite the multidimensional407

nature of phenotypic data, it is very often the case that there are only a few effective dimensions408

of variation (Beldade et al. 2002, Houle et al. 2016, Alba et al. 2021, Rohner and Berger 2023).409

Indeed, if many perturbations result in concordant phenotypic changes, then phenotypic variation410

will be restricted to a manifold of lower dimension than the total number phenotypic variables.411

Following this, we should expect that parallel evolution will be explained by a repeatable genetic412

change only in cases where the effect of perturbing that gene is unaligned with others (i.e., the413

associated vector b̃λ in equation (5) is unique). This represents a scenario where the perturbed414

gene plays a distinctive role in developmental dynamics. One possible example of this is the gain and415

loss of red and yellow carotenoid coloration in diverse vertebrates (e.g., birds, mammals, lizards),416

which is commonly associated with perturbations in the expression of gene BCO2 that encodes a417

carotenoid degradation enzyme (V̊age and Boman 2010, Andrade et al. 2019). This evidence implies418

that BCO2 plays a distinctive role in the generation of color, so that perturbations in its functioning419

have distinctive phenotypic effects. Repeatable genetic changes underlying parallel evolution can420

thus be used to make inferences about developmental dynamics, guiding future research.421

Conclusion422

An understanding of evolution is incomplete without a theory of how phenotypic variation is gen-423

erated in each generation. The representation of development as a process provides the conceptual424

basis to predict when perturbations of different origins result in similar phenotypic changes. Our425

results indicate that a promising avenue for future research on the generation of variation will not426

focus on the specific identity of elements such as genes, but rather focus on how those elements427

participate in a dynamical process that integrates different sources of information to produce phe-428
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notypes.429
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Materials and Methods430

Reaction-diffusion simulations431

The tissue is composed of a grid of 50 × 50 cells, each having a given amount of the two432

morphogens, thus resulting in a total of 5000 states. Difussion occurs only between neighboring433

cells and is represented with a discretized version of the Laplacian as commonly done (e.g., Sick434

et al. 2006). Periodic boundary conditions are assumed, so the tissue can be thought of as being435

mapped to a torus. The first 2500 states are the concentration of morphogen 1 in the 2500 cells,436

while the last 2500 states correspond to the concentration of morphogen 2. This means that for437

i = 1, 2, . . . , 2500, xi corresponds to concentration of morphogen 1 of the cell located in position438

(q + 1, r) of the grid where q and r are the quotient and remainder, respectively, of the division439

i ÷ 50, where ÷ represents integer divison. Similarly, xi for i = 2501, 2502, . . . , 5000 corresponds440

to the concentration of morphogen 2 of the cell located in position (q + 1, r) of the grid where q441

and r are the quotient and remainder, respectively, of the division (i − 2500) ÷ 50. To obtain the442

sensitivity vectors, we need the Jacobian and the weights. These are obtained by differentiating the443

discretized equation. The Jacobian results in a sparse matrix since only neighboring cells interact444

(through diffusion). The Jacobian and the weights are given in the accompanying scripts.445

Populations of gene-regulatory networks To generate the up − down and left − right pop-446

ulations, composed of individuals that have plastic responses in different directions, we evolve447

populations under fluctuating selection tracking an optimum with a correlated environmental in-448

put (see Draghi and Whitlock 2012). Specifically, in each generation, the position of the optimum449

is correlated with the environmental inputs, so the networks with higher fitness are those that allow450

individuals to tract the optimum in each generation using the environmental input. To simplify451

the figures, out of the 5 genes, only genes 1 and 2 receive environmental input and selection acts452

only on genes 3 and 4. We evolve the populations for 500 generations, starting with 1000 clones453

that were randomly generated. All optimums fluctuated around a value of (x3, x4) = (7.5, 7.5). A454

set of 15 populations were evolved to track an optimum that fluctuated for values of x3 around 7.5,455
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but keeping x4 fixed at 7.5. We refer to this first set of populations as left-right. Another set of 15456

populations, which we refer to as up-down, evolved tracking an optimum where x4 fluctuated and457

x3 was fixed at 7.5.458

Angle between sensitivity vectors The angle θ(t) between the directions of two sensitivity459

vectors sλ1(t) and sλ2(t) is defined as the minimum between the angle formed by sλ1(t) and sλ2(t),460

and the angle formed by −sλ1(t) and sλ2(t). By taking the minimum we make sure that θ(t)461

depends on the direction of the vectors and not the sign. Complete alignment between sλ1(t)462

and sλ2(t) is then given by θ(t) = 0◦, in which case the sensitivity vectors have the exact same463

direction (but possibly different signs). This will be the case if the weights are proportional (i.e.,464

b̃λ1(t,λ
∗) = αb̃λ2(t,λ

∗) with α constant). More generally, however, we consider that there is465

evidence for alignment if the angle θ(t) is significantly smaller, at a given confidence level, than466

the distribution of angles between independent random vectors in Rn, with n being the number of467

states. We note that as n becomes larger, the distribution of angles between random vectors in Rn
468

concentrates around 90◦, so random vectors are generally ’more’ orthogonal in higher dimensional469

spaces. In this way, θ(t) < 90◦ is higher dimensions is a signature of alignment.470
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Appendixes471

Appendix A472

Here, we obtain an expression for the sensitivity vectos. We begin with the general representation473

of development as a dynamical system, as given by equation (1). Under the assumption that the474

developmental function f is smooth, there exists a unique solution x(t, λ) for a λ close to the475

reference value λ∗, which can be obtained as (see Khalil 2002)476

x(t, λ) = x0 +

∫ t

t0

f(τ,x(τ, λ), λ)dτ (A1)

We are interested in calculating the sensitivy vector, as defined in equation (2). For this, we477

take the partial derivative with respect to λ on both sides of equation (A1), which gives478

sλ(t) =
∂x(t, λ)

∂λ
=

∂

∂λ

[
x0 +

∫ t

t0

f(τ,x(τ, λ), λ)dτ

]
=

∫ t

t0

[
∂f(τ,x(τ, λ), λ)

∂x(τ, λ)
sλ(τ) +

∂f(τ,x(τ, λ), λ)

∂λ

]
dτ

(A2)

where we use that that the derivative of the integral is equal to the integral of the derivative, and479

that the derivative of the initial condition is zero because it does not depend on λ. We further use480

the chain rule to obtain the derivative of f with respect to λ.481

To obtain an expression of how the sensitivity vector changes in time, we take the partial482

derivative of the equation (A2) with respect to time, yielding equation (4).483

Appendix B484

Here, we derive the equations for the Jacobian, weights and sensitivity vectors for the developmental485

parameters of the gene regulatory network. We begin by rewriting equation (7) in matrix form.486

For this, we write h = Θx + u, and define κ = (K1,K2, . . . ,Kn) and the n × n diagonal matrix487

M = diag(µ1, µ2, . . . , µn). This yields488

ẋ = f(t,x,Θ,u,M,κ) = R(h)−Mx with R(h) =


r(h1)

K1+r(h1)
...

r(hn)
Kn+r(hn)

 (A3)

which follows the form of equation (1), with the developmental parameter vector given by λ =489

(Θ,u,M,κ) and reference developmental parameter values given in the vector λ∗ = (Θ∗,u∗,M∗,κ∗).490

The study of alignment in this example is performed at the steady state, with ẋi = 0 for all491

i. We therefore assume that the reference values for the developmental parameters, given by λ∗,492

result in a stable system able to reach a steady state. Further, we assume that h̄i > 0, with the bar493

indicating the steady state. This allows to replace r(h̄i) = h̄i. Note that if h̄i < 0, then equation (7)494

reduces to ẋi = −µixi and it can be easily checked that this results in b̄ui = b̄θij = b̄µi = b̄Ki = 0.495
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In other words, the steady state is robust to perturbations in the developmental parameters if496

h̄i < 0.497

We obtain the Jacobian,498

Ā =
∂f

∂x

∣∣∣∣
x̄,λ∗

=
∂f

∂h

∂h

∂x

∣∣∣∣
x̄,,λ∗

−M∗ =

 ᾱ1 . . . 0
...

. . .
...

0 . . . ᾱn

Θ∗ −M∗ (A4)499

where the bars indicate variables in the steady state, asterisks indicate reference value, and ᾱi =500

Ki/(Ki + h̄i)
2. We now calculate the weights b̄λ as501

b̄ui =
∂f

∂ui

∣∣∣∣
x̄,λ∗

=
∂f

∂h

∂h

∂ui

∣∣∣∣
x̄,λ∗

=



...
0
ᾱi

0
...

 , b̄Ki =
∂f

∂Ki

∣∣∣∣
x̄,λ∗

=



...
0
γ̄i
0
...

 ,502

b̄µi =
∂f

∂µi

∣∣∣∣
x̄,λ∗

=



...
0
x̄i
0
...

 , b̄θij =
∂f

∂θij

∣∣∣∣
x̄,λ∗

=
∂f

∂h

∂h

∂θij

∣∣∣∣
x̄,λ∗

=



...
0

ᾱix̄j
0
...

 ,503

504

with γ̄i = −h̄i/(Ki+ h̄i). Because the Jacobian is invertible, we can obtained the sensitivity vectors505

with the simplified expression given in equation (5), as506

s̄ui = −Ā−1b̄ui , s̄θij = −Ā−1b̄θij , s̄µi = −Ā−1b̄µi , s̄Ki = −Ā−1b̄Ki . (A5)507

Thus, the sensitivity functions for ui, θij , µi, and Ki are always aligned for a given i and all j.508

In particular, they point in the direction of the i-th column of Ā−1.509
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Supplementary Figures620

Supplementary Figure 1. Initial conditions for the reaction-diffusion simulations.621

Supplementary Figure 2. This figure is analogous to Main Figure 4 but for selection ”upwards”,622

towards an optimum in (x3, x4) = (7.5, 12.5) as represented by the purple arrow. Panel a. shows623

evolution for left-right and up-down populations, in orange and black respectively. The up-down624

populations out-competes the left-right, as expected from their plastic responses shown in Main625

Figure 4.a. Transparent lines are the average among the 25 evolutionary lines initiated from a626

single individual from each of the 15 populations in each set. Panel b. shows that an additional627

mutational input directly on the first two rows of Θ significantly accelerates evolution towards the628

optimum for the up-down populations.629
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