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Understanding, predicting, and controlling the phenotypic consequences of genetic and
environmental change is essential to many areas of fundamental and applied biology.
In evolutionary biology, the generative process of development is a major source of
organismal evolvability that constrains or facilitates adaptive change by shaping the
distribution of phenotypic variation that selection can act upon. While the complex
interactions between genetic and environmental factors during development may
appear to make it impossible to infer the consequences of perturbations, the persistent
observation that many perturbations result in similar phenotypes indicates that there
is a logic to what variation is generated. Here, we show that a general representation
of development as a dynamical system can reveal this logic. We build a framework
that allows predicting the phenotypic effects of perturbations, and conditions for
when the effects of perturbations of different origins are concordant. We find that
this concordance is explained by two generic features of development, namely the
dynamical dependence of the phenotype on itself and the fact that all perturbations
must affect the developmental process to have an effect on the phenotype. We apply our
theoretical framework to classical models of development and show that it can be used
to predict the evolutionary response to selection using information of plasticity and
to accelerate evolution in a desired direction. The framework we introduce provides
a way to quantitatively interchange perturbations, opening an avenue of perturbation
design to control the generation of variation.

evo-devo | plasticity | evolvability | dynamical systems | prediction

A complete theory of organismal evolution requires a theory of phenotypic variation, a
theory of natural selection, and a theory of heredity. While tremendous advances have
been made in the last century to understand the two latter pillars of Darwinian evolution,
a theory for the generation of phenotypic variation remains elusive.

The process that generates variation in morphology, physiology, and behavior is
known as development in the broad sense (1). Notoriously complex and nonlinear
interactions between genes, cells, tissues, and environmental factors during development
make it difficult to grasp the phenotypic consequences of genetic and environmental
perturbations. Indeed, the diversity and complexity of developmental systems could be
taken as evidence that a priori inference of the consequences of perturbations rarely will
be feasible. A pessimistic conclusion is therefore that the best one could hope for is to
demonstrate that generative processes in principle can impact evolutionary trajectories
(2–4), while studies that demonstrate how development affects evolution will remain a
collection of idiosyncratic case studies (5–7). This perception that generative processes
are intrinsically unpredictable and that selection is the only reliable force in evolution
is also reflected in biotechnology and medicine, where attempts to direct evolutionary
processes emphasize control over selective regimes rather than control over generative
processes.

In this paper, we provide a more optimistic perspective by addressing a particular
problem concerning the generation of variation and its implications for evolution:
the relationship between the phenotypic effects of different genetic and environmental
perturbations. Genetic and environmental effects on phenotypic variation have often
been considered to be independent, as assumed in models of quantitative genetics
where phenotypes are represented as the sum of uncorrelated genetic and environmental
contributions (8, 9). However, since both genetic and environmental perturbations are
channeled through the same developmental system, it is unlikely that this assumption
generally holds true (10, 11). It is indeed well known that environmental change
occasionally induces phenotypes that resemble genetic mutants [e.g., melanism in
butterflies (12)], and it has been shown that plastic responses are biased toward phenotype
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dimensions with high additive genetic variation (13), but the
existing body of work is mostly a collection of empirical
observations.

If genes and environments are to some degree equivalent, or
interchangeable, as sources of phenotypic variation, this could
have important consequences for understanding and predicting
evolution, and eventually controlling it. In particular, gene–
environment interchangeability implies that there is a formal
connection between evolvability and plasticity. Evolvability can
be defined as the capacity to generate phenotypic variation in
response to genotypic variation (14), while plasticity refers to
the same capacity for phenotypic variation in response to envi-
ronmental variation. If genetic and environmental perturbations
are interchangeable to some degree, the evolution of plasticity
may shape evolvability and vice versa, and information of one
can reveal features of the other (15). Previous theoretical work
has suggested that such a relationship between plasticity and
evolvability does exist (16–22), but there is no general framework
to explicitly define the conditions for when this relationship
should be expected or to study its evolutionary implications.
Such understanding would enable designing combinations of
perturbations to drive the developmental system to a desired
state, thus controlling the generation of variation.

The aim of this paper is to introduce a conceptual framework
to understand when perturbations of different origins will
cause shifts in phenotype in similar directions in trait space.
We illustrate this phenomenon of alignment using in silico
experiments of reaction–diffusion models and gene regulatory
networks. We show how the theory can be used i) to predict the
concordance of phenotypic effects of perturbations of different
origins, such as two different genetic perturbations, or a genetic
and an environmental perturbation, ii) to estimate the effects
of mutations on the phenotype, iii) to infer evolvability using
information of plasticity, and iv) to accelerate evolution in a
desired direction. This ability to convert information from plastic
responses into information about evolutionary potential, and vice
versa, could have applications in diverse areas concerned with the
phenotype, including developing solutions to environmental and
societal challenges using biotechnological engineering.

Results
The results are presented in sections. First, we introduce a
general representation of development as a dynamical system.
Second, we develop the formalism to study the phenotypic
effect of a single perturbation. Third, we study the alignment
between perturbations of different origins (e.g., genetic and
environmental). Finally, we apply the theoretical framework
to classical models of development, namely reaction–diffusion
models and gene regulatory networks, and show how it can
be used for evolutionary understanding, prediction, and even
control. We note that these examples have been chosen for
illustrative purposes, but the applicability of the framework is
not confined to them.

A General Representation of Development as a Dynamical
System. Mathematical models of development usually consist
of a representation of the phenotype and a set of rules of
how this phenotype changes through developmental time, for
example, through the interaction among different components of
the system. Examples of such models include reaction–diffusion
models (e.g., ref. 23), gene regulatory networks (e.g., ref. 24),
and models of morphogenesis (e.g., ref. 25). These models are
commonly given mathematically as differential equations which

are numerically integrated over time to simulate a developmental
trajectory, which is the change in the phenotypic values through
developmental time. Following this body of work (26, 27), we
take the general representation of development given by

ẋ = f (t, x,�), x(t0) = x0, [1]

where x = (x1, x2, ..., xn) is a vector composed of n variables
that we refer to as states, with each state xi representing a
different aspect of the phenotype that is relevant to describe
the system’s behavior and that changes during developmental
time (e.g., the expression level of a given gene); ẋ is the time
derivative of x, which gives the temporal change in the states; t is
developmental time; f is a developmental function determining
the rules of how the states change in time; x0 are the state
values at initial time t0, known as the initial conditions; and
� = (�1, �2, ..., �p) are developmental parameters, which can
be genetic or environmental (e.g., the affinity of a cofactor
modulating downstream gene expression, or temperature during
developmental time). Unlike states, developmental parameters
do not change dynamically.

Eq. 1 captures two central properties of development which
will be important to derive the results presented later. The
first of these central aspects is that development depends at
each step on the preexisting phenotype. This is mathematically
captured by the fact that the change in the states at each time,
given by ẋ, is itself a function of the states x at that time.
This means that the phenotype at any given time is both the
effect of earlier and the cause of later developmental changes.
This feedback of the phenotype on itself makes development a
dynamical phenomenon rather than a static one (11, 28), where
the ways in which the phenotype can and cannot change at a
given time depend on the state of the phenotype at that time.
Examples of this historicity of development include the sequential
determination of cell fate (29) and sensitivity windows, where
the same perturbation results in a phenotypic effect only for
responsive phenotypes at specific times during development (30).

The second important aspect of development highlighted by
Eq. 1 is that changes in any of the developmental parameters �
have an effect on the states x through the same function f . In
other words, any perturbation in the developmental parameters
has to be channeled through the developmental function to result
in a change in the states. As we show below, this functional
dependence of development on the parameters (10, 11) is
fundamental to study the alignment of the effects of perturbations
with different origins.

While for the rest of the manuscript we develop the framework
to study alignment when the phenotypes of interest are the
state variables x, the framework can also be extended to study
alignment when phenotypes are a function of these state variables,
as explained in Appendix A.

The Effect of a Perturbation on One Developmental Parameter.
We are interested in studying how a given developmental trajec-
tory is affected by a perturbation in one of the developmental
parameters. We begin with a system with a single developmental
parameter (i.e., � = �), and we extend the results to multiple
parameters later. Further, we will assume that the developmental
function f is smooth, having continuous partial first derivatives.
While limiting the applicability of the framework, a large number
of models of development fulfill this condition as we show below.

The study of perturbations is always comparative: Perturba-
tions must be studied with respect to an unperturbed reference.
We thus need to define a reference developmental trajectory from
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which to study deviations from. We define �∗ as the reference
value for the developmental parameter (i.e., corresponding to an
organism with the wild-type genotype in standard environmental
conditions). The developmental trajectory of the reference,
unperturbed developmental system is thus given as the unique
solution of Eq. 1 for � = �∗, which we denote x(t, �∗), as shown
in Fig. 1.

We are interested in the direction in which the reference
developmental trajectory will change when we introduce a small
perturbation to �∗. This type of study is known as sensitivity
analysis in dynamical systems theory (31). The direction of change
is given by

s�(t) =
∂x(t, �)

∂�

∣∣∣∣∣
(t,�∗)

. [2]

The vector s�(t) is known as the sensitivity vector [or
function, (31)], and it is a vector of length n containing the
partial derivatives of the states x1, x2, . . . , xn with respect to the
parameter �, evaluated at the reference value �∗ and at time t.
This vector then tells us how we expect the states to change for a
small change in the developmental parameter at each time t. For
small perturbations, we can predict the perturbed developmental
trajectory using

x(t, �) ≈ x(t, �∗) + s�(t)(�− �∗), [3]

which tells us that the perturbed developmental trajectory x(t, �)
will differ from the reference, unperturbed trajectory x(t, �∗) by
an amount proportional to the difference �− �∗, with direction
determined by the vector s�(t). Eq. 3 resembles a first-order
Taylor approximation, and is only locally valid (i.e., for values of
� close to �∗). While additional terms of the Taylor expansion
could in principle be added to improve accuracy, we focus here
on the linear approximation shown in Eq. 3.

Calculating s�(t) is not straightforward since we do not know
the explicit relationship between the states x and the parameter
�. We show in Appendix B (see also ref. 31) that s�(t) can be
obtained as the unique solution to

ṡ�(t) = A(t, �∗)s�(t) + b�(t, �∗), s�(t0) = 0 [4]

A(t, �∗) =
∂f (t, x, �)

∂x

∣∣∣∣∣
x(t,�∗)

, b�(t, �∗) =
∂f (t, x, �)

∂�

∣∣∣∣∣
x(t,�∗)

.

The matrix A(t, �∗) is known as the Jacobian matrix and
summarizes the relationship between f and x. Note that this

Fig. 1. A general framework to study the phenotypic effects of perturbations of different origins. On Top, the reference developmental trajectory x(t, �∗) in
black and the perturbed trajectory x(t, �) in purple through developmental time t. The panel in the Middle shows that, at any given time, the effect of the
perturbation on the trajectory, given by the sensitivity vector s�(t) is a linear combination of the columns of the matrix A−1(t, �∗). The three panels at the
Bottom show the sensitivity vectors for different perturbations at a given developmental time are linear combinations of the columns of the same A−1. s�1 and
s�2 are largely aligned, but not s�3 .
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Jacobian does not depend on what parameter � is perturbed. The
relationship between f and � is captured by the vector b�(t, �∗).
In this way, if we know the function f , then we can calculate
A(t, �∗) and b�(t, �∗), and jointly solve numerically Eqs. 1 and
4 to obtain s�(t), which is the vector of interest.

Under the assumption that the Jacobian is invertible, we can
get the simplified expression

s�(t) = A−1(t, �∗) (ṡ�(t)− b�(t, �∗))︸ ︷︷ ︸
b̃�(t,�∗)

[5]

= col1(A−1)b̃�,1 + col2(A−1)b̃�,2 + · · ·+ coln(A−1)b̃�,n,

where coli(A−1) is the i-th column of A−1(t, �∗) and b̃�,i is the
i-th element of vector b̃�. This means that the sensitivity vector
at a given time s�(t) can be expressed as a linear combination
of the columns of A−1(t, �∗) with weights determined by the
elements of b̃�(t, �∗). This result is shown graphically in Fig.
1, and provides a basis to study alignment as explained in
the next section. Note that b̃�(t, �∗) reduces to −b�(t, �∗) if
‖b�(t, �∗)‖ � ‖ṡ�(t)‖, with ‖.‖ the Euclidean norm. This
is the case for an organism that has reached steady state (e.g.,
adulthood).

Alignment between the Effects of Perturbations of Different
Origin. We now use the formalism introduced above to study the
relationship between the phenotypic effects of perturbations of
different origins. Given two developmental parameters, we say
that their effects are totally aligned if the associated sensitivity
vectors have an angle of 0◦, meaning that the two perturbations
result in phenotypic changes in exactly the same direction. More
generally, we say that there is some degree of alignment if the two
sensitivity vectors have an angle that is significantly smaller, at a
given confidence level, than the distribution of angles between
independent random vectors of the same dimension—which
approaches 90◦ as the number of dimensions increases.

Fig. 1 gives an example for three developmental parameters �1,
�2, and �3, which can correspond for example to the affinity of
a cofactor modulating gene expression (genetic parameter), tem-
perature, and salinity (environmental parameters), respectively.
The effects of modifying each of those parameters at time t is given
by the vectors s�1(t), s�2(t), and s�3(t), and the angles between
them determine alignment. From Eq. 5, we know that all of
these sensitivity vectors can be written as linear combinations
of the columns of the same matrix, the inverse of the Jacobian
A−1(t,�∗), where each column is weighted by the elements of
b̃� (note that we omit the arguments (t, �∗) when it is clear
from context for readability). This provides the basis to derive
sufficient conditions for alignment between the effects of different
perturbations; if two perturbations have a dominant component
in the direction of the same column of the inverse of the Jacobian,
then these perturbations will be aligned. That is, there will be
some degree of alignment between perturbing �1 and �2 if there
is an i such that ‖coli(A−1)b̃�,i‖ � ‖

∑
j 6=i colj(A

−1)b̃�,j‖ for
� = �1, �2. Furthermore, there will be total alignment between
the perturbations if b̃�1 and b̃�2 are proportional.

The illustrative example in Fig. 1 shows that s�1(t) and s�2(t)
are largely aligned because they both have a large component in
the direction of the first column and a small component in the
direction of the second column of the inverse of the Jacobian.
s�3(t) is not aligned with the other two vectors, since it has a
large component in the second rather than first column. We

further note that the conditions given above for alignment are
sufficient but not necessary. Indeed, there can be a large degree
of alignment according to our definition when the inverse of the
Jacobian has columns that are similar to each other.

We highlight that the measurement of the angle between
sensitivity vectors can be done at each time t of development,
and therefore the measured alignment between the effects of
perturbations can change in time—since the sensitivity vectors
themselves can change during development. This means that if
two perturbations produce similar phenotypic effects, but act
at different times separated by a developmental window, the
framework will measure low alignment during this window and
increased alignment afterward.

The two components of the sensitivity vectors, namely
A−1(t,�∗) and b̃�,i, are related to the two key aspects of
development highlighted by Eq. 1. The first of these aspects—
the historicity of development—is related to matrix A−1(t,�∗),
the inverse of the Jacobian which summarizes the relationship
between f and x. This matrix determines the structure for
phenotypic changes, since its columns provide the directions in
which the phenotype is able to respond to a perturbation. These
directions are independent of the nature of the perturbation itself
and are determined by the capabilities of the responsive pheno-
type at that time. The second relevant aspect of development
highlighted by Eq. 1 is the fact that developmental parameters
� appear in the same developmental function f . This is related
to the other component of the sensitivity vector, the weights
b̃�,i, that depend on the relationship between f and �. In this
way, alignment will be determined by how the developmental
parameters affect the specific developmental function f to which
the general framework is applied. In the extreme case that two
developmental parameters affect exactly the same aspects of f ,
then there will be total alignment. On the other extreme, if
two parameters affect totally distinct aspects of f (e.g., they affect
two different developmental modules) then we should not expect
alignment in general. Between these extremes, different degrees of
similarity in how developmental parameters affect developmental
dynamics will result in different degrees of alignment as a result
of perturbations in those parameters. Even some degree of
alignment can be useful for evolutionary applications, and the
framework allows to quantitatively measure this degree as we
show below.

In the next sections, we apply this general framework to well-
known models of development, and use it to make evolutionary
prediction and control. We highlight here that these examples
are for illustrative purposes, but the general framework can be
applied to any developmental function of the form given in Eq.
1. We thus make no a priori assumptions about the structure of
the developmental function f .

Alignment in a Reaction–Diffusion Model. Reaction–diffusion
models are a set of models of pattern-formation that have
been widely used to represent diverse developmental processes,
including digit formation and hair follicle placement (23, 32–
34). These models consist of a physical representation of the
tissue and a set of molecules called morphogens. Morphogens
diffuse and interact within the tissue, leading to the emergence
of patterns as they accumulate in specific spatial regions. Here,
we will use one of these reaction–diffusion models known as
the Gray–Scott model (35) to illustrate how we can study the
alignment of phenotypic effects of different origins using the
framework introduced in the previous sections.

4 of 11 https://doi.org/10.1073/pnas.2320413121 pnas.org
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The developmental function f for the Gray–Scott model is
given by

ẋ1 = D1∇
2x1 − x1x2

2 + F (1− x1),

ẋ2 = D2∇
2x2 + x1x2

2 − (F + k)x2,
[6]

where x1 and x2 are the cellular concentrations of morphogen
1 and 2, respectively, D1 and D2 are their diffusion rates
to neighboring cells, ∇2 is the Laplacian operator, F is the
production rate of morphogen 1, and k is the rate of degradation
of morphogen 2. These parameters have been shown to have
genetic basis in some systems (23, 36), so the perturbations on
these parameters can be understood as resulting from different
genetic changes. We will study the alignment between the
phenotypic effects of perturbing the developmental parameters k
and F .

We represent a portion of embryonic tissue as a grid of 50 ×
50 cells (details of the simulations are given in Materials and
Methods). In each of these cells, there is a given amount of the
two morphogens, so the total number of states in the system is
50 × 50 × 2 = 5,000. Diffusion of the morphogens occurs
between neighboring cells. The simulation is done for a window
of time of t = 5,000 ×h where h = 0.1 is the integration step.
We start from initial conditions shown in SI Appendix, Fig. S1,
and use the reference parameters values D∗1 = 0.32, D∗2 = 0.06,
k∗ = 0.06 and F∗ = 0.032. We calculate sk(t) and sF (t) by
jointly integrating Eq. 4.

Fig. 2 shows that the angle between sk(t) and sF (t) remains
around 50◦. This means that sk(t) and sF (t) are partially aligned,
since this angle is significantly smaller than the angle between
random vectors of the dimension of the sensitivity vectors, which
is 90◦. This implies that the phenotypic effects of perturbing k
and F should be similar.

We test the analytical prediction of alignment by simulating
perturbed systems. We run simulations with small perturbations
in the developmental parameters (i.e., k = k∗ + Δk and F =
F∗ + ΔF ), and compare the resulting phenotypes. Fig. 2 shows
that the phenotypic effects of either a decrease in k or an increase
in F are largely aligned, resulting in the formation of connected
dots rather than dots as in the reference, unperturbed phenotype.
Note that since the angle between sk(t) and sF (t) is not 0◦, we
should not expect the perturbed phenotypes to be identical.

Alignment in a Gene Regulatory Network. We now use the gen-
eral framework to study the alignment between the phenotypic
effects of perturbation with different origins in a gene regulatory
network. In this section, we derive analytical results and test them
using simulations. In the next section, we use the knowledge of
alignment to connect plasticity and evolvability.

We use a common representation of gene regulatory networks
found in the literature (19, 24) with continuous representation
of time as assumed in Eq. 1 (e.g., ref. 22). In the conventional
formulation of these models, the phenotypes are the expression
levels of n transcription factors that regulate each other’s
expression (but see Appendix A for a possible extension). We
represent these phenotypes as states x = (x1, x2, . . . , xn), with xi
being the expression level of the i-th gene. The function f giving
the change in the states during development for this example is

ẋi =
r(hi)

Ki + r(hi)
− �ixi; hi =

n∑
j=1

�ijxj + ui [7]

for i = 1, 2, . . . , n, where �ij is the ij-th element of the matrix
Θ, and gives the regulatory effect of gene j on the expression of
gene i (i.e., �ij > 0, �ij < 0, and �ij = 0 represent activation,
inhibition, and no interaction, respectively). The expression of
each gene can also be activated or inhibited by environmental
inputs u = (u1, u2, . . . , un). Gene expression follows Michaelis–
Menten dynamics with coefficients Ki, and gene product has a
degradation rate given by �i. In this way, the developmental
parameters in this example are �ij, ui, Ki, and �i for all i, j =
1, 2, . . . , n. For the analyses in this section and the next using
the gene-regulatory network, we study the steady state, which we
consider maturity of the organism, where gene expression is no
longer changing (i.e., ẋi = 0 for all i). We use a bar to denote that
a variable corresponds to the steady state (i.e., Ā is the Jacobian
at the steady state).

In Appendix C, we obtain the Jacobian Ā and the weights
b̄�, for each of the developmental parameters, and use them to
calculate the sensitivity vector using Eq. 5. We find that for a
given i, the sensitivity vectors s̄�ij , s̄ui , s̄Ki , and s̄�i are totally
aligned (i.e., regardless of j) since the weight vectors b̄ all have
a nonzero value in the i-th position, and zeroes elsewhere. This
means that, for example, a perturbation in the environmental
input ui will result in a phenotypic change that is in the same

Fig. 2. Alignment in a reaction–diffusion model. The panel on the Left shows in purple the angle between sF (t) and sk(t) through development time, and in
orange the average angle between sk(t) and 10 random vectors of the same dimension (1 SD is also plotted but covered by the dots). After a transitory period
with oscillations following the introduction of the perturbations, the angle between sF and sk is significantly smaller that the angle between random vectors,
indicating alignment between the phenotypic effects of perturbing k and F . The three panels to the Right show the phenotypes, plotted as the concentration of
morphogen 1 with higher concentration in lighter color, for the reference developmental parameters, perturbed k and F , respectively, at developmental time
500. As indicated by the small angle between sF and sk , the phenotypic effect of the perturbations is similar, resulting in connected dots as opposed to the
dotted pattern in the reference.
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direction as a genetic change in any of the elements of the i-th
row of Θ. In particular, this phenotypic effect will occur in the
direction of vector coli(Ā−1).

We test the analytical predictions by simulating gene networks
of five genes and initial concentrations of 0.1 for all genes. We
begin by using the sensitivity vectors to predict the phenotypic
effects of mutations, which are changes in the elements of the
interaction matrix Θ. For this, we generate 100 random gene
regulatory networks each with a different reference interaction
matrix Θ∗k . For each network k, we generate 20 mutants by
modifying one element of Θ∗k . We predict the effect of these
mutations using Eq. 3 as x̄∗ + s̄�ij (�ij − �∗ij), where x̄∗ is the
steady state of the unperturbed system and s̄�ij is as obtained in
Appendix C. We then compare this prediction with the actual
simulated steady state for the mutants.

Fig. 3A shows that the formalism based on sensitivity vectors
predicts the effect of mutations on the phenotype. As expected,
the error in the prediction goes to zero as the perturbations be-
come smaller. Perturbations smaller than 20% in the parameters
have median relative error smaller than 3% in the prediction of
their phenotypic effect. The predictions for this class of network
are robust to larger perturbation, with perturbations in the range
of 80 to 100% in the parameters still resulting in predictions with
less than 30% median error.

We now turn to the question of alignment between different
sources of perturbation. From the results in Appendix C, we know
that the sensitivity vectors s̄ui and s̄�ij are aligned for any given
i, and for all j. This means that perturbing the environmental
parameter ui or perturbing any of the elements in the i-th row of
Θ will result in changes in the phenotypes in the same direction.
To test this, we generated 100 random reference networks. For
each of these reference networks, we introduced genetic and
environmental perturbations, in the first row of the reference
Θ∗ and in u∗1, respectively. We then simulated the networks
until the steady state was reached, and measured the phenotypic
effects of the introduced perturbations. Fig. 3B shows that the
angles between the vectors resulting from these perturbations are
significantly smaller than the angles between random vectors.
This confirms that the phenotypic effects of these genetic and
environmental perturbations are aligned.

From the results in Appendix C, we further predict that
there should not be alignment between the effects of perturbing
environmental parameter u1 and the elements belonging to the
other rows of matrixΘ. SI Appendix, Fig. S2 shows that simulated
results confirm this prediction from the framework. In this
way, the gene regulatory network both shows alignment and
unalignment for different pairs of perturbations.

Plasticity and Evolvability. The alignment between the pheno-
typic effects of genetic and environmental perturbations provides
a link between plasticity and evolvability. Indeed, the plastic
response of organisms to environmental change can be used to
infer what variation can arise through heritable genetic changes,
and thus what variation can selection act on.

To study this, we use populations of individuals represented
by gene regulatory networks of five genes, where only genes 1
and 2 receive environmental input (i.e., u3 = u4 = u5 = 0). We
have two sets of 15 populations each that we call up–down and
left–right sets, which differ in how organisms respond plastically
to environmental perturbation. As explained in Materials and
Methods, these populations were obtained by subjecting initially
random networks to fluctuating selection tracking an optimum
with a correlated environmental input for 500 generations (19).

Fig. 4A shows one example population from the up–down set in
black, and one example population from the left–right population
in orange. The dots represent the steady states of the phenotypes
for the individuals when no environmental input is introduced.
The arrows have their origin in these unperturbed reference
states, and point in the direction of change when environmental
perturbations are introduced. The population plotted in black
show large changes in x4 (i.e., the expression level of gene 4)
in response to environmental perturbations, but little change in
x3. The opposite applies to the orange population, which mostly
varies in x3 when environmental perturbations are introduced.

Because we know from the analytical results above that the
response to environmental perturbations is aligned with the
response to genetic perturbations, we predict that the left–right
populations should evolve faster, compared to the up–down
populations, if selected in the direction of increase in x3 and
no change in x4. We test this by making the populations evolve

A B

Fig. 3. The general framework predicts the effects of mutations and alignment with environmental perturbations. Panel (A) shows the prediction error for the
effect of a mutation using the sensitivity vector. The x-axis has the perturbation relative perturbation size (�ij − �∗ij)/�

∗

ij . The relative error was calculated as the
difference between predicted change using sensitivity vector and the simulated change, divided by the simulated change. 100 random networks were used
as reference and 20 mutants were generated for each reference network. Panel (B) shows the alignment between genetic and environmental perturbations
in �1,j and u1 for random j in 1,2...,5. The angle between the resulting changes was measured in degrees and plotted as a histogram in purple. As shown in
Appendix C, the expectation for this angle is zero (i.e., total alignment) as indicated by the dashed line. However, this is only valid for small perturbations, and
larger ones may deviate from this expected behavior (see panel A) causing some spread in the histogram. Data include 100 reference networks, each with 10
environmental and 10 genetic perturbations introduced. The orange histogram shows the angle between random vectors in five-dimensional morphospace,
sampled from a multivariate Gaussian distribution.
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A B C

Fig. 4. Plasticity predicts evolvability and this can be used for evolutionary control. Panel (A) shows an example population of the left–right and up–down sets,
in orange and black respectively. Dots represent unperturbed individuals (no environmental inputs), and the arrows represent the direction of the change in
steady states when an environmental perturbation is introduced in one of the first two states. Panel (B) shows evolution for left–right and up–down populations,
toward an optimum located in (x3 , x4) = (12.5,7.5) represented with the purple arrow. The left–right populations, in orange, outcompete the up–down.
Transparent lines are the average among the 25 evolutionary lines initiated from a single individual from each of the 15 populations in each set. Panel (C) shows
that an additional mutational input directly on the first two rows of Θ significantly accelerates evolution toward the optimum for the left–right populations.

“to the right,” toward an optimum in (x3, x4) = (12.5, 7.5).
To avoid confounding effects of standing genetic variation, we
sampled 25 random individuals from each of the 30 populations
(15 left–right and 15 up–down), and created independent
evolutionary lines from 1,000 clones of those randomly sampled
individuals (i.e., total of 2 × 15 × 25 = 750 independent
evolutionary simulations starting from 1,000 clones each).

Fig. 4B confirms that the individuals from the left–right
populations are consistently faster at evolving “toward the right,”
to an optimum in (x3, x4) = (12.5, 7.5), compared to the
individuals from the up–down populations. The 15 transparent
orange lines correspond to the average of the 25 simulations
from each of the 15 left–right populations. Similarly, the
transparent black lines represent the averages from the 15 up–
down populations. Total averages are given with fully opaque
colors.

For this particular system, we can further use the sensitivity
vectors identified in the previous section to accelerate evolution
in a desired direction. From the analytical results, and as
confirmed with the simulations (Fig. 3B), we know that the
i-th environmental input will be aligned with mutations in the
i-th row of Θ. Furthermore, we know that the plastic response
shown in Fig. 4A is generated by perturbation in u1 and u2.
Therefore, we know that evolution in the desired direction can
be accelerated by increasing the mutation rate of the first two
rows of Θ.

Fig. 4C shows a scenario in which additional mutations are
introduced in each generation but only on the first two rows of
Θ. For individuals in set left–right, many of these mutations will
be beneficial since they will be aligned with the plastic response,
which itself points toward the optimum at (x3, x4) = (12.5, 7.5),
as shown in Fig. 4A. This results in a marked acceleration of
evolution toward the optimum (compare orange lines in panels
b and c of Fig. 4). Populations from the set up–down, however,
cannot benefit from this additional mutational input since we
know from Fig. 3C that mutations in the first two rows ofΘ result
in phenotypic changes that do not point toward the optimum
for the up–down populations. SI Appendix, Fig. S3 shows that,
analogously, the up–down populations outcompete the left–right
populations if selection is “upward,” toward an optimum in

(x3, x4) = (7.5, 12.5), and that evolution is accelerated in this
direction if we increase the mutational input in the first two rows
of Θ for the up–down, but not the left–right population.

Discussion
In this work, we demonstrate that representing development
as a dynamical system provides a theoretical framework to
study how generative processes create phenotypic variation, and
thus constrain or facilitate adaptive change. The framework is
formulated from a bottom–up perspective, utilizing knowledge
of developmental dynamics given by function f of Eq. 1 to
predict the phenotypic effects of perturbations. This approach
contrasts with others that can be described as top–down, such
as quantitative genetics, where inferences about underlying
mechanisms are made from observational phenotypic data.
While these perspectives are not mutually exclusive, they are
more suited to different objectives. The bottom–up approach
adopted here proves particularly valuable for predicting the
relationship between the effects of perturbations of different
origins, but cannot be directly used to discern the underlying
cause of a given phenotypic change based solely on phenotypic
data. It is worth noting that, although beyond the scope of
this paper, the framework presented here could be extended
to be used in top–down analyses by, for example, inferring
sensitivity vectors directly from time series data of developmental
perturbations (37).

The general representation of development as a dynamical
system captures two general features of generative processes that
are lost in static representations that only focus on the outcome
of development, but not on how that outcome is constructed
(e.g., static maps from genotypes and environments to adult
phenotypes). The first property is historicity, which means that
the phenotype at any given time is both the effect of earlier, and
the cause of later, developmental change. The second property
is that all perturbations must affect the developmental process
to have an effect on the phenotypes. These two generic features
of development are reflected in the elements of the sensitivity
vectors, which determine how the phenotype is expected to
change as a result of a perturbation during development.
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A benefit of this representation of development is that it es-
tablishes a formal connection between plasticity and evolvability,
understood as the capacity to generate phenotypic variation in
response to perturbations of environmental or genetic origin,
respectively. The existence of theoretical conditions for when
genetic and environmental perturbations result in concordant
phenotypic effects indicates that both phenomena ought to be
more broadly conceptualized as variational properties that reflect
the internal structure of the developmental process (16, 38). This
conceptualization has important implications for evolutionary
prediction and control, since it suggests that information of
plasticity can reveal salient aspects of evolvability, and vice versa.
While this link between plasticity and evolvability has been
demonstrated before in specific models (17–22), the framework
presented here extends this understanding in multiple ways.

First, the general framework based on sensitivity functions
allows defining explicit theoretical conditions for when plasticity
and evolvability should be aligned. These conditions are general
and apply to any system of the general form of Eq. 1, since they
are derived from generic features of development represented
as a process. Due to their generality, these conditions open the
possibility to scale these results for application in evolutionary
prediction and control in diverse systems. Importantly, these
conditions apply to any point during development and are not
constrained to be applied to the adult. This can be important if,
for example, selection occurs during development. A limitation
for applying this framework to phenotypic variation in nature is
that the developmental function f needs to be known to calculate
matrix A(t) and vector b(t). Note however that even if we cannot
obtain explicit analytical values for these elements, the general
conclusions of the framework still apply.

Second, the framework makes it possible to go beyond the
qualitative expectation that genetic and environmental pertur-
bations are to some degree interchangeable in development
(e.g., refs. 11 and 39), by making quantitative predictions of
the phenotypic effect of perturbation, and of the relationship
between different perturbations. As shown in this paper, this
information can be exploited to predict responses to selection
without an estimate of heritable (co)variance in phenotypes
(e.g., as summarized in the G matrix). This is possible because
knowledge about plasticity captures properties of developmental
systems that carry information about how those systems can
accumulate heritable phenotypic variation. While some empirical
data (e.g., ref. 13) could be interpreted in this manner, there
appears to be no direct test of this prediction. Note, however,
that the framework introduced here is only locally valid, meaning
that it is predictive of the effects of perturbations of small size.
Therefore, predictions of evolvability based on plasticity may
only be valid for a limited number of generations after which
the sensitivity functions would have to be reidentified since the
internal structure of development may have changed.

Finally, the framework reveals how to exploit this alignment
for evolutionary control, by accelerating evolution in certain
directions through forced mutations predicted to result in
adaptive phenotypic changes. More generally, if the sensitivity
vectors of multiple perturbations are identified, this means that
it is possible to design combinations of perturbations to drive the
developmental process in a desired direction. Similar to the other
points above, this insight suggests opportunities for empirical
investigation of evolvability, which also may have implications in
applied fields of biology such as biotechnology.

While so far we have emphasized the alignment between the
phenotypic effects of genetic and environmental perturbations,

different genetic perturbations can also be aligned with each
other (40). In the simulations, this redundancy is evidenced by
the fact that mutating any element of the i-th row of Θ in
the gene regulatory network or mutating any of the parameters
k or F in the reaction–diffusion model, generates concordant
phenotypic change. In this way, a population will evolve in the
same direction of trait space by accumulating mutations in any
of those equivalent elements. This redundancy can explain why
genetic changes underlying parallel evolution often fail to be
replicated (e.g., ref. 41), since multiple changes at the genetic
level can explain the same phenotypic adaptations.

Redundancy ultimately reflects the fact that it is not the
identity of any specific gene that matters for the generation of
phenotypic variation, but rather the role it plays in the dynamics
of the developmental process. This can explain the observation
that, despite the multidimensional nature of phenotypic data, it
is very often the case that there are only a few effective dimensions
of variation (5, 42–44). Indeed, if many perturbations result in
concordant phenotypic changes, then phenotypic variation will
be restricted to a manifold of lower dimension than the total
number of phenotypic variables.

Following this, we should expect that parallel evolution will
be explained by a repeatable genetic change only in cases where
the effect of perturbing that gene is unaligned with others
(i.e., where s� points in a direction that is different to the
sensitivities of other parameters). This represents a scenario where
the perturbed gene plays a distinctive role in developmental
dynamics. One possible example of this is the gain and loss
of red and yellow carotenoid coloration in diverse vertebrates
(e.g., birds, mammals, lizards), which is commonly associated
with perturbations in the expression of gene BCO2 that encodes
a carotenoid degradation enzyme (45, 46). This evidence implies
that BCO2 plays a distinctive role in the generation of color, so
that perturbations in its functioning have distinctive phenotypic
effects. Repeatable genetic changes underlying parallel evolution
can thus be used to make inferences about developmental
dynamics, guiding future research.

Conclusion
An understanding of evolution is incomplete without a theory
of how phenotypic variation is generated in each generation.
The representation of development as a process provides the
conceptual basis to predict when perturbations of different origins
result in similar phenotypic changes. Our results indicate that
a promising avenue for future research on the generation of
variation will not focus on the specific identity of elements such
as genes, but rather focus on how those elements participate in a
dynamical process that integrates different sources of information
to produce phenotypes.

Materials and Methods

Reaction–Diffusion Simulations. A spatially discretized version of Eq. 6 is
implemented (ref. 33). The tissue is composed of a grid of 50× 50 cells, each
having a given amount of the two morphogens, thus resulting in a total of 5,000
states. Diffusion occurs only between neighboring cells and is represented with
a discretized version of the Laplacian as commonly done (e.g., ref. 33). Periodic
boundary conditions are assumed, so the tissue can be thought of as being
mapped to a torus. The first 2,500 states are the concentration of morphogen 1
in the 2,500 cells, while the last 2,500 states correspond to the concentration
of morphogen 2. This means that for i = 1, 2, . . . , 2,500, xi corresponds to
concentration of morphogen 1 of the cell located in position (q+1, r)of the grid
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whereqand r are the quotient and remainder, respectively, of the division i÷50,
where ÷ represents integer division. Similarly, xi for i = 2,501, 2,502, . . . ,
5,000 corresponds to the concentration of morphogen 2 of the cell located in
position (q + 1, r) of the grid where q and r are the quotient and remainder,
respectively, of the division (i− 2,500)÷ 50. To obtain the sensitivity vectors,
we need the Jacobian and the weights. These are obtained by differentiating
the discretized equation (33). The Jacobian results in a sparse matrix since only
neighboring cells interact (through diffusion). The Jacobian and the weights are
given in the accompanying scripts.

Evolutionary Simulations of Gene-Regulatory Networks. Organisms are
represented as gene regulatory networks composed of five genes following
the developmental function given in Eq. 7 (19, 22). The genotype of each
individual is the interaction matrix Θ, where the element �ij is the regulatory
effect of gene j on the expression of gene i, and the phenotype is the gene
expression levels at the steady state for the five genes. Organisms reproduce
in discrete generations with selection acting on the phenotype. The fitness
of each individual is calculated from the Euclidean distance d between the
phenotype and the optimum as exp(−d2/2). Parents are randomly selected
in each generation with probability equal to their relative fitness. After the two
parents are chosen, the genotype of the offspring is built by recombining the
parental genotypes, randomly sampling with equal probability the element �ij
from either parent. Organisms acquire a number of mutations that are Poisson
distributed with mean 0.005. Mutations can be of two types: either a change in
architecture or a change in the strength of interactions. To implement this, we
write the interaction matrix Θ as the element-by-element product of a binary
matrix ΘB, which determines whether gene j regulates gene i or not (with
a 1 or 0, respectively), and a matrix ΘC containing the real-valued strengths
of these regulatory influences. With a probability of 0.2, a mutation changes
an element of the binary matrix ΘB, which means adding or removing the
regulatory connection between two genes. Alternatively, the mutation changes
the weight of a randomly chosen interaction by adding a value from a Gaussian
distribution with mean zero and SD of 0.2.

To generate the up–down and left–right populations (Fig. 4), composed
of individuals that have plastic responses in different directions, we evolve
populations under fluctuating selection tracking an optimum with a correlated
environmental input (see ref. 19). In our simulation, only genes 1 and 2 receive
environmental input (i.e., u3 = u4 = u5 = 0) and fitness is determined
only by genes 3 and 4. We begin by generating 100 random gene networks,
such that the steady state for the expression of genes 3 and 4 are in the
interval 7.5 ± 2. For each of these random networks, we generate separate
populations of clones of 1,000 individuals. These populations of clones are
then subject to 500 generations of fluctuating selection, where the values of
u1 and u2 in each generation determine the position of the optimum in that
generation. The environmental inputs u1 and u2 are drawn in each generation
from a bivariate normal distribution with mean (0, 0) and covariance matrix
[0.2 0.18; 0.18 0.2]. The first 50 populations of clones were evolved under
fluctuating selection where the optimum for x3 was fixed at 7.5, while the
optimum for x4 was 7.5 + u1 + u2. Analogously, The 50 other populations
had fixed selection for x4 = 7.5 and fluctuating in each generation for x3
following 7.5 + u1 + u2. After the 500 generations of evolution, some of
the populations evolved a clear response to environmental inputs that tracked
the moving optimum. We refer to as left–right populations to the set of 15
populations that evolved to track the optimum that fluctuated for values of x3
around 7.5, but keeping x4 fixed at 7.5. Similarly, we call up–down populations
to the set that evolved tracking an optimum where x4 fluctuated and x3 was fixed
at 7.5.

Angle between Sensitivity Vectors. The angle �(t) between the directions
of two sensitivity vectors s�1(t) and s�2(t) is defined as the minimum between
the angle formed by s�1(t) and s�2(t), and the angle formed by −s�1(t)
and s�2(t). By taking the minimum, we make sure that �(t) depends on the
direction of the vectors and not the sign. Complete alignment between s�1(t)
and s�2(t) is then given by �(t) = 0◦, in which case, the sensitivity vectors

have the exact same direction (but possibly different signs). This will be the case if
the weights are proportional (i.e., b̃�1(t,�

∗) = �b̃�2(t,�
∗) with � constant).

More generally, however, we consider that there is evidence for alignment if
the angle �(t) is significantly smaller, at a given confidence level, than the
distribution of angles between independent random vectors in Rn, with n
being the number of states. We note that as n becomes larger, the distribution
of angles between random vectors in Rn concentrates around 90◦, so random
vectors are generally closer to orthogonality in higher dimensional spaces. In
this way, �(t) < 90◦ in higher dimensions is a signature of alignment.

Appendixes
Appendix A. Here, we extend the sensitivity analysis to include
the possibility that the phenotypes of interest are not directly the
states, but rather some function of them. For this, we extend the
general equation [1] as follows:

ẋ = f (t, x,�), x(t0) = x0, [A1]
y = g(t, x), [A2]

where y = (y1, y2, ...ym) is a vector of m phenotypes of interest,
g is a smooth function in x and t, and the rest of the variables are
as defined in the main text. We denote by sy�(t) the sensitivity
vectors that measure the change in the phenotypes y in response
to a change in one of the developmental parameters �. This will
be related to the sensitivity of the states s�(t) defined in Eq. 2 by

sy�(t) =
∂y(t, x)

∂�

∣∣∣∣
(t,x∗,�∗)

=
∂g(t, x)

∂x

∣∣∣∣
(t,x∗,�∗)

s� = C(t, x∗, �∗)s�, [A3]

whereC(t, x∗, �∗) is a matrix of sizem×n that can be understood
as the linear approximation of g(t, x) for small perturbations. The
matrix C(t, x∗, �∗) can be calculated in a straightforward manner
as the derivative of g with respect to the states, evaluated at time
t and at the reference trajectory and parameter value (x∗ and �∗,
respectively). The sensitivity vectors defined for the phenotypes y
can be used to study alignment between perturbations of different
origins in an analogous way to the sensitivities defined for the
states. We note that alignment in the states x is sufficient—but
not necessary—for alignment in the phenotypes y. In particular,
ifC(t, x∗, �∗) = I the n×n identity matrix, then the phenotypes
of interest are the states as assumed in the main text. The
extension presented here can be used, for example, together with
the developmental function f of the gene regulatory network to
add an additional functional layer, where the phenotypes are a
function of the levels of gene expression.

Appendix B. Here, we obtain an expression for the sensitivity
vectors. We begin with the general representation of development
as a dynamical system, as given by Eq. 1. Under the assumption
that the developmental function f is smooth, there exists a unique
solution x(t, �) for a � close to the reference value �∗, which can
be obtained as (see ref. 31),

x(t, �) = x0 +
∫ t

t0
f (�, x(�, �), �)d�. [A4]

We are interested in calculating the sensitivity vector, as
defined in Eq. 2. For this, we take the partial derivative with
respect to � on both sides of Eq. A4, which gives
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s�(t) =
∂x(t, �)

∂�

=
∂

∂�

[
x0 +

∫ t

t0
f (�, x(�, �), �)d�

]
[A5]

=
∫ t

t0

[
∂f (�, x(�, �), �)

∂x(�, �)
s�(�) +

∂f (�, x(�, �), �)
∂�

]
d�,

where we use that the derivative of the initial condition is zero
because it does not depend on �, and the chain rule to obtain the
derivative of f with respect to �.

To obtain an expression for ṡ�(t) of how the sensitivity vector
changes in time, we take the partial derivative of Eq. A5 with
respect to time, yielding Eq. 4.

Appendix C. Here, we derive the equations for the Jacobian,
weights, and sensitivity vectors for the developmental parameters
of the gene regulatory network. We begin by rewriting Eq.
7 in matrix form. For this, we write h = Θx + u, and
define � = (K1, K2, . . . , Kn) and the n × n diagonal matrix
M = diag(�1,�2, . . . ,�n). This yields

ẋ = f (t, x,Θ, u,M,�) = R(h)−Mx [A6]

with

R(h) =


r(h1)

K1+r(h1)
...

r(hn)
Kn+r(hn)

 ,

which follows the form of Eq. 1, with the developmental parame-
ter vector given by� = (Θ, u,M,�) and reference developmental
parameter values given in the vector �∗ = (Θ∗, u∗,M∗,�∗).

The study of alignment in this example is performed at the
steady state, with ẋi = 0 for all i. We therefore assume that the
reference values for the developmental parameters, given by �∗,
result in a stable system able to reach a steady state x̄∗. Further,
we assume that h̄i > 0, with the bar indicating the steady state.
This allows to replace r(h̄i) = h̄i. Note that if h̄i < 0, then Eq.
7 reduces to ẋi = −�ixi and it can be easily checked that this
results in b̄ui = b̄�ij = b̄�i = b̄Ki = 0. In other words, the steady
state is robust to perturbations in the developmental parameters
if h̄i < 0.

We obtain the Jacobian,

Ā =
∂f
∂x

∣∣∣∣
x̄∗,�∗

=
∂f
∂h

∂h
∂x

∣∣∣∣
x̄∗,�∗
−M∗

=

 �̄1 . . . 0
...

. . .
...

0 . . . �̄n

Θ∗ −M∗, [A7]

where �̄i = Ki/(Ki + h̄i)2. We now calculate the weights b̄� as

b̄ui =
∂f
∂ui

∣∣∣∣
x̄∗,�∗

=
∂f
∂h

∂h
∂ui

∣∣∣∣
x̄∗,�∗

= [0, . . . , 0, �̄i, 0, . . . , 0]T ,

b̄Ki =
∂f
∂Ki

∣∣∣∣
x̄∗,�∗

= [0, . . . , 0, 
̄i, 0, . . . , 0]T ,

b̄�i =
∂f
∂�i

∣∣∣∣
x̄∗,�∗

= [0, . . . , 0, x̄∗i , 0, . . . , 0]T ,

b̄�ij =
∂f
∂�ij

∣∣∣∣
x̄∗,�∗

=
∂f
∂h

∂h
∂�ij

∣∣∣∣
x̄∗,�∗

= [0, . . . , 0, �̄i x̄∗j , 0, . . . , 0]T ,

where the nonzero element in each vector is in the i-th position,

̄i = −h̄i/(Ki + h̄i)2 and T is the transpose. Because the
Jacobian is invertible, we can obtain the sensitivity vectors with
the simplified expression given in Eq. 5, as

s̄ui = −Ā−1b̄ui , s̄�ij = −Ā−1b̄�ij ,

s̄�i = −Ā−1b̄�i , s̄Ki = −Ā−1b̄Ki .
[A8]

Thus, the sensitivity functions for ui, �ij, �i, and Ki are always
aligned for a given i and all j. In particular, they point in the
direction of the i-th column of Ā−1.

Data, Materials, and Software Availability. Simulation results and
code to generate data are deposited in GitHub at https://github.com/
lisandromilocco/ (47).
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