DOCTORAL PROGRAMME IN INTEGRATIVE LIFE SCIENCE
FACULTY OF BIOLOGICAL AND ENVIRONMENTAL SCIENCES
UNIVERSITY OF HELSINKI
FINLAND

Quantitative genetics in nonlinear
genotype-phenotype maps

Lisandro Milocco

Doctoral dissertation

To be presented for public examination with the permission of the
Faculty of Biological and FEnvironmental Sciences of the Uni-
versity of Helsinki, in room 2402, Biocenter 3, on the 30th of

September, 2022 at 18 o’clock.

HELSINKI 2022



Supervisor
Isaac Salazar-Ciudad, Autonomous University of Barcelona, Spain

Thesis advisory committee
Juha Merild, University of Helsinki, Finland
Heikki Helanterd, University of Oulu, Finland

Pre-examiners
Jon Brommer, University of Turku, Finland
P. David Polly, Indiana University, United States of America

Opponent
Kjetil Lysne Voje, University of Oslo, Norway

Custos
Craig Primmer, University of Helsinki, Finland

The Faculty of Biological and Environmental Sciences uses the Ouriginal
system (plagiarism recognition) to examine all doctoral dissertations.

Copyright (©) 2022 Lisandro Milocco
ISSN 2342-3161 (print)

ISSN 2342-317X (online)

ISBN 978-951-51-8487-0 (paperback)
ISBN 978-951-51-8488-7 (PDF)
Helsinki 2022

Unigrafia



Abstract

Understanding the genotype-phenotype map (GPM), or how specific ge-
netic variation relates to specific phenotypic variation, is a fundamental
objective of biology. Particularly for the study of evolution, the GPM is
important since it bridges genes, the heritable units, with the traits that
interact with the environment and determine fitness. The applied field of
quantitative genetics approximates the GPM using linear statistical models.
This approximation is the basis of many important applications, including
methods to predict the response to selection in a population. The other
major field concerned with the GPM is evolutionary developmental biology
or evo-devo, which studies the gene and cell interactions by which the phe-
notype is built through the process of development. A main result from this
field is that the GPM is notoriously complex and nonlinear, with genetic
effects being highly dependent on genetic background, biophysical factors
and the environment. This can be in conflict with the linear approximation
of quantitative genetics. Because evo-devo and quantitative genetics have
developed independently, there is a gap in the understanding of how these
conceptualizations of the GPM fit with each other, what are their limita-
tions, and if there is a potential to improve our ability to make prediction
about evolutionary systems by combining insights from both approaches.
This thesis deals with these issues.

The thesis can be divided in two parts. The first part consists of the-
oretical work studying in detail how quantitative genetics predictions and
models behave under complex and nonlinear GPMs that arise from devel-
opment. For this, I performed large-scale evolutionary simulations using
a realistic representation of the GPM given by a computational model of
tooth development. Using this set of simulations, I first studied how well
the linear approximation of quantitative genetics is able to predict the re-
sponse to selection. I found that predictions using the linear approximation
can be biased when the GPM is nonlinear. In other words, there can be
a significant part of the response to selection that is missed by the linear
approximation. Using the same set of simulations, I studied how the linear
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approximation evolves in a complex GPM. I found that the evolutionary
dynamics of the linear approximation are highly dependent on the GPM,
and differ substantially from what is expected for a linear GPM. These dy-
namics are not purely stochastic, but rather deterministic ways in which
the linear approximation changes as a reflection of the curvature of the
GPM. In the second part of my thesis, I use the insight obtained in the
first part to develop an applied method that uses techniques of quantitative
genetics, combined with insight from evo-devo, to provide better predic-
tions of evolutionary response to selection. The method uses a Kalman
filter to combine information from selection acting on each generation, with
information from the evolutionary time-series. I test the method with the
simulated dataset using the model of tooth development, and also with an
artificial selection experiment on the wing of the fruit fly, where 16 000 flies
were measured. The new method is able to improve predictions and is a
promising path to combine knowledge from both fields studying the GPM.
In this way, the work in this thesis shows that rather than being a nuisance,
the nonlinear nature of the GPM contains information that can improve
our understanding of evolutionary processes.
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Chapter 1

Introduction

Darwin’s most revolutionary contribution was, arguably, to propose a the-
ory of evolution that is variational (Levins and Lewontin 1985). Indeed,
previous theories of evolution were transformational, as they proposed that
changes in populations occurred as the result of each individual in the pop-
ulation experiencing change in the same direction. In Lamarck’s theory of
evolution, for example, the length of the giraffe’s neck is the result of each
individual giraffe attempting to stretch their neck to reach the top of the
trees. In contrast, in Darwin’s variational theory of evolution, each indi-
vidual of the population differs from each other in some properties, and
the system evolves by changing the distribution of these different types,
with new types possibly arising. For giraffes, that would mean that there
is individuals with necks of different lengths in a population, and that the
distribution of neck length changes in time towards longer necks. Thus,
evolution is the conversion of variation among individuals in a population
into variation between groups in time and space. Without variation, then,
there is no biological evolution.

Despite the central role that phenotypic variation plays in biological
evolution, the question of how phenotypic variation arises in a population
has not been the focus of dominant evolutionary theory for the last cen-
tury. Indeed, during most of the 20th century, the dominant framework
to study evolution was the Modern Synthesis (Huxley 1942, Mayr 1963,
Beatty 1986). This paradigm resulted from the integration of Darwinian
natural selection, Mendelian inheritance and population-level mathemati-
cal models. An underlying assumption of the Modern Synthesis is that the
process that generates phenotypes, known generally as development, can be
treated as an unknown black box (Pigliucci 2010, Hall 2012), which ulti-
mately maps random genetic changes due to mutations and recombination
into small, gradual changes in phenotype. In this way, understanding devel-
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2 1 INTRODUCTION

opment is inconsequential to understanding evolution, as it merely serves
the role of a “change of scale” from genetic to phenotypic. This conceptual-
ization allows to describe evolution entirely in terms of changes at the level
of genes. These ideas are formalized in the statistical branch of the Modern
Synthesis, known as quantitative genetics, and in the closely related field of
population genetics.

Quantitative genetics describes phenotypic variation in a population in
terms of linear statistical models. The field was largely developed in the
context of animal and plant breeding sciences to solve applied problems.
The field provides methods to describe variation in a population, to measure
selection acting on a population, and even to predict how the mean of a set
of traits in a population will change in time as a result of selection.

During the second half of the 20th century, a growing body of work
known as evolutionary-developmental biology or evo-devo started to reveal
details of the process of development and its relationship with evolution-
ary dynamics. A main result from the field of evo-devo is that, because
phenotypes are constructed through the process of development, it is devel-
opment that determines what phenotypic variation arises (Alberch 1991).
Development, then, plays a critical role in determining evolutionary dynam-
ics, as evolution can only occur in the directions were phenotypic variation
is possible. Development is a complex dynamical processes with many parts
interacting with each other at different levels of biological organization, in-
cluding genes, signalling molecules, cells, tissues and environment. This
results in the relationship between genotypes and phenotypes to be com-
plex and show features such as nonlinearity, which can be missed by linear
statistical models.

An apparent conflict arises from the ways quantitative genetics and evo-
devo approach the study of the evolution of phenotypes. The first is based
on the assumptions that development can be treated a black box and that
the relationship between genotypes and phenotypes can be approximated
with linear, statistical models for practical applications. On the other hand,
evo-devo suggests that development is more than a simple transformation of
small genetic changes to small phenotypic changes, resulting in a complex
and nonlinear relationship between genotypes and phenotypes with certain
features that cannot be captured by linear models.

This thesis deal with the conflict mentioned above. In the following sec-
tions I will briefly describe the relevant conceptual underpinnings of quanti-
tative genetics and evo-devo, which were somewhat caricatured in this brief
introduction. Then I will discuss the important differences between the two
fields, specifically in terms of how they describe the relationship between
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genetic and phenotypic variation. Finally, I give the specific objectives of
this thesis.

1.1 Quantitative genetics

Quantitative genetics is a statistical branch of genetics that studies the
evolution and inheritance of characters that show continuous variation, such
as height. The approach is based on the idea that continuous characters are
affected by many genes, as well as nongenetic environmental factors. Much
of the development in the field has been done in the context of animal and
plant breeding, and pushed by the need to solve practical problems like how
to design breeding schemes to increase traits of economic interest.

The backbone of quantitative genetics is the concept of the additive
effect of an allele. For an allele B;, and assuming random mating, this ef-
fect can be intuitively understood as the average deviation of an individual
having allele By with respect to the population mean. The focus on ad-
ditive effects is typically justified by the fact that, in sexually-reproducing
organisms, offspring inherit only one allele at each locus from each parent,
and not complete genotypes. Then, the additive genetic effect of an allele
attempts to give a quantitative measure of the expected phenotypic effect
associated to that allele, which allows to make predictions about the next
generation.

Additive effects can be calculated using linear regression, the method-
ological powerhouse of quantitative genetics. For a diallelic locus, the ad-
ditive genetic effects of the two alleles B; and Bs in a population can be
estimated with the following linear regression (Lynch and Walsh 1998 Ch.
4):

Gk = pg + a1 Nyji + aaNojp + 5jk, (1.1)

where Gjj, is the genotypic value of genotype B; By, defined as the expected
phenotype for genotype B;By; g is the mean genotypic value in the popu-
lation; Ny, and Nyji, are the gene content, defined as the number of copies
of alleles By and By respectively (i.e. Nyj is 0, 1 or 2, and Ngjj is 2, 1, 0
for genotypes BoBa, B1By/BoB1, B1B1, respectively); d;;, are the residuals
of the regression; and, finally, the slopes a; and as are the additive genetic
effects of alleles B; and Bs respectively.

There are two important features of equation (1.1) which are common
to all statistical models in quantitative genetics. First, all terms on both
sides are expressed in units of phenotype. That is, even though the name
genotypic value suggests a measure of genetic variation, it is in units of
phenotype. A second important feature of equation (1.1) is that it is defined



4 1 INTRODUCTION

in terms of deviation from the mean of the population, highlighting the fact
that it is a local description, dependent on genotypic and environmental
frequencies of a given population at a given time. This means that the
additive values a; and as depend on population frequencies.

The residuals d;;, of the regression (1.1) are called the dominance ef-
fects, as they describe the deviation of genotypic value G;;, from the one
expected by total additivity. Indeed, if the residual dj; is zero then Gj;
is simply the sum of additive effects and the population mean. Note that
this definition of dominance as deviations from additivity is statistical and
depends on allelic frequencies. This statistical definition of dominance is
not equivalent to the genetic effect known as dominance, where the pheno-
typic value of the heterozygote is not midway between the phenotypic values
of the two homozygotes, a definition that is frequency-independent. Some
authors have proposed to define this latter type of dominance as “physiolog-
ical” (Cheverud and Routman 1995) or “functional” (Hansen 2006, 2013),
to differentiate it from statistical dominance.

It is important to note that there is no one-to-one relationship between
functional and statistical dominance, meaning that the presence of func-
tional dominance does not translate exclusively as statistical dominance.
Indeed, functional dominance affects not only the d,; terms of equation
(1.1) and the variance that they explain, but it also affects the additive
genetic effects a; and ag and the variance that they explain. This occurs
because functional dominance affects the phenotypes associated with the
different allelic combinations, and will therefore affect the slope of the re-
gression. An immediate consequence of this is that one cannot asses the
causal importance of functional dominance by measuring the size of statis-
tical dominance (Cheverud and Routman 1995, Huang and Mackay 2016),
since statistical dominance can be low but functional dominance can still
have a strong effect on the additive values.

The genotypic value Gjj of each locus given by equation (1.1) can be
added together across loci to obtain the total genotypic value of an indi-
vidual, defined as the expected phenotype for a given genotype. If there
are interactions among different loci, additional interaction terms can be
included in the linear regression. These terms are known as statistical epis-
tasis and they capture the deviation from additivity for pairs of alleles at
different loci, much like statistical dominance captures the deviation from
sum of alleles in one loci.

Statistical epistasis, just like its dominance counterpart, is a statistical
abstraction representing deviation from additivity that is compatible with
the linear models of quantitative genetics. It is different to the functional
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definition of epistasis, where the phenotypic effect of an allelic substitu-
tion depends on alleles in other loci. As explained before for dominance,
the size of statistical epistasis does not reflect the causal importance of
functional epistasis in the phenotype, and functional epistatic interactions
influence additive, dominance and epistatic statistical components (Hansen
2013, Huang and Mackay 2014).

The linear models in quantitative genetics treat dominance and epistasis
as deviations from additivity. Indeed, these effects are collectively known
as nonadditive genetic effects. This parametrization minimizes the variance
in phenotypes explained by genetic interactions (Lynch and Walsh 1998,
Hansen 2006, Nelson et al. 2013, Huang and Mackay 2016). This occurs
because the parametrization is centered around additive effects, and linear
regression by least squares then maximizes the amount of variance explained
by additive effects (Lynch and Walsh 1998). Then, only marginal variance
is left to be explained by nonadditive genetic effects. Huang and Mackay
2016 show that alternative parametrizations centered around dominance (or
epistasis) result in most variation being statistically explained by dominance
(or epistatic) statistical effects. This ultimately occurs because, as explained
above for dominance, there is no one-to-one correspondence between the
functional genetic effects of additivity, dominance and epistasis, and their
statistical counterparts. This is the case because genetic effects are not
independent of each other, so a linear model cannot disentangle them.

In applied quantitative genetics, and as mentioned above, the focus is
on the additive effects since these values can be used for applied purposed
such as predicting the response to selection as will be explained below. In
the model given in equation (1.1) we have the additive genetic effects
and ag for two alleles in a given loci. The sum of the additive genetic effects
of all alleles at all loci for a given individuals is known as the breeding value
of the individual. The variance of the breeding values in a population is
known as additive genetic variance, V4.

V4 is a central concept in quantitative genetics. It represents the part
of the total phenotypic variance (Vp) that can be used for prediction of the
phenotypes in the next generations, since it is associated with the additive
genetic effects. An important feature of V4 is that it can be estimated from
the resemblance between relatives. The idea is that different relatives share
different number of genes through inheritance, and this will result in differ-
ent degrees of phenotypic similarity (Lynch and Walsh 1998). For example,
assuming (as it is typically done) that epistasis terms are negligible, V4 can
be estimated as twice the covariance of parent-offspring trait value.

The ratio V4/Vp is known as (narrow-sense) heritability and it plays an
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central role in the breeder’s equation (Lush 1937, Hill 2014), which allows
to predict the change in the mean of a trait in a population (Z) as

Az = Es = h?s, (1.2)

Vp

where AZ is the change in the mean of the trait from one generation to
the next, h? is the heritability and s is the selection differential acting on
that trait, measured as the covariance between the trait and relative fitness
(Lynch and Walsh 2018, Falconer and Mackay 1996).

The breeder’s equation is a pillar of quantitative-genetic theory, and its
influence in animal and plant breeding cannot be understated (Hill 2010,
Hill and Bunger 2004, Hill and Kirckpatrick 2010).

The derivation of equation (1.2) follows from Price’s theorem under the
assumption that there is no change in trait mean without selection and that
the joint distribution of parent and offspring is bivariate normal (Rice 2004,
Walsh and Lynch 2018). Indeed, the assumption of multivariate normality
is central to much of quantitative genetics (Ch. 2 Lynch and Walsh 1998,
Rice 2004). This is the case because this distribution has several qualities
that make it convenient for mathematical analysis. For example, assuming
joint bivariate normality between two variables allows to characterize the
relationship between them with a linear regression plus noise. Moreover, the
distribution is symmetrical and entirely defined by its mean and variance.

Evolutionary biologists recognized the potential of the breeder’s equa-
tion to predict the response to selection in natural settings. Natural selec-
tion, however, acts on several traits, and evolutionary biologist are in general
interested in studying all of them. To this end, Russell Lande (Lande 1979,
Arnold and Lande 1983) developed the multivariate version of the breeder’s
equation under the assumption of joint multivariate normal distribution for
all traits between parents and offspring. The multivariate breeder’s equa-
tion is given by,

AZ =GP s, (1.3)

where Az is the vector of changes in the mean and s is the multivariate
selection differential. G and P are the additive genetic and phenotypic
variance-covariance matrices, respectively. These are square and symmetric
matrices, with diagonal elements equal to the additive genetic (or pheno-
typic) variances of the traits, and offdiagonal elements equal to the additive
genetic (or phenotypic) covariances between pairs of traits.

The analogy between equations (1.3) and (1.2) is clear, with G and P
being the multivariate extensions of V4 and Vp. The G-matrix, just like
its univariate counterpart Vy, can be estimated using phenotypic data of
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known relatives. Statistical requirements are, however, much larger, since
several elements have to be estimated (for n traits, G has n(n + 1)/2 dis-
tinct elements to be estimated). This has stimulated the development and
application of several statistical techniques to estimate G. The most impor-
tant of these is the “animal model”, a special type of linear mixed models
that allows to incorporate information from complex pedigrees (Lynch and
Walsh 1998, Kruuk 2004).

There is surprisingly not many studies that directly address the question
of how well the multivariate breeder’s equation (1.3) predicts the response
to selection. Some studies have, however, reported inconsistencies between
the predictions and the observed change in trait mean (e.g. Sheridan and
Barker 1974, Campo and Raya 1986, Roff 2007, Pujol et al 2018, Shaw 2019,
Pélabon et al. 2021). Ultimately, errors in the prediction of the breeder’s
equation must arise due to violations in the assumptions underlying the
equation. These include the parent-offspring regression being nonlinear
(Rice 2012, Walsh and Lynch 2018), but also other sources of error that
are more technical rather than conceptual, such as using wrong estimates
of G or s, or selecting a set of traits that do not capture all the selection
acting on the population (Walsh and Lynch 2018).

The multivariate breeder’s equation is commonly found in the literature
in the form

Az = G, (1.4)

where 3 = P~ l's is known as the selection gradient. (3; represents the
change in relative fitness given a one unit change in trait [ while holding all
other traits constant (Hill and Kirckpatrick 2010, Lande and Arnold 1983,
Walsh and Lynch 2018).

Equation (1.4) predicts that the change in the mean of a set of traits
will be the compromise between what selection favors, given by 3, and what
direction has more additive genetic variation, given by G (Maynard-Smith
et al. 1985, Schluter 1996). In this way, the G-matrix takes a central role
in the study of evolution in quantitative genetics, as it summarizes what
directions can more readily respond to selection.

The study of G has become a subfield of its own within evolutionary
quantitative genetics (Steppan et al 2002, Macguigan 2005) and the concept
of G has shaped the way much research in evolutionary biology is carried
out. A large amount of work has been devoted to comparing G matrices
among populations (e.g. Cano et al. 2004, Arnold et al. 2008, Doroszuk et
al. 2008, Eroukhmanoff and Svensson 2011, Wood and Brodie 2015, Assis
et al. 2016, Delahaie et al. 2017, Walter et al. 2018, Hangartner et al.
2020, Chakrabarty and Schielzeth 2020), study how G possibly constrains
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evolution (e.g. Cheverud 1988, Arnold 1992, Schluter 1996, Hansen and
Houle 2008, Kirkpatrick 2009, Eroukhmanoff 2009, Walsh and Blows 2009),
retrospectively reconstruct selection (e.g. Merila et al. 1994), or predict
responses to selection (e.g. Lande and Arnold 1983, Campo and Raya 1986,
Roff 2007). This large body of empirical work studying and comparing
G-matrices is a mixture of studies in wild and laboratory populations, the
latter using artificial selection where the experimenter imposes the selective
pressure.

It is important to highlight that the G-matrix, just like Vy, is a statis-
tical abstraction that depends both on the genetic basis and development
underlying the traits, and on the distribution of genotypes and environ-
ments in a given population. Therefore G has some features that should be
stressed.

The first important feature of G is that it cannot be used to infer the un-
derlying genetic architecture of a set of traits (i.e. the patterns of pleiotropy,
dominance, and epistasis behind the set of traits). That is, there is no sim-
ple one-to-one relationship between underlying genetic architecture and G.
This is tightly related to the discussion above about functional and sta-
tistical genetic effects, and exemplified by Houle 1991 who uses a trade
off model where a limited amount of a resource is allocated into two life-
history traits. In the model, two traits are determined by two processes:
acquisition, which determines the total amount of limiting resource that
an individual acquires, and allocation, which determines how the resource
is allocated between the two traits. He assumes a simplified architecture
where each loci affects either allocation or acquisition. One would expect
that the presence of allocation would manifest as a negative genetic covari-
ance between the two traits in question (i.e. the offdiagonal element of G).
However, Houle 1991 finds that covariance can be positive depending on
the relative number of loci that participate in acquisition and allocation. In
this way, the sign of the covariance between traits cannot be used to infer
the existence of a trade-off between the traits, given in this case by the
allocation process. Other studies have further shown that multiple under-
lying genetic mechanisms can produce the same G-matrix (Gromko 1995,
Pigliucci 2006, Chebib and Guillaume 2016).

Another fundamental feature of G is that it is local. That is, any esti-
mate of GG is specific to the particular population and a given generation.
However, GG is typically used to make inferences for longer time frames of
several generations. The validity of this is tightly linked to the question of
how fast G changes. There is no theoretical expectation of how G should
change, except under strong simplifying assumptions such as the infinitesi-
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mal model, which assumes infinitely many loci that contribute additively to
the trait (Arnold et al. 2008, Walsh and Lynch 2018 Ch. 16). In this way,
the question of how G changes with generations and environments has been
treated empirically, with studies showing both that G can change rapidly
(Cano et al. 2004, Doroszuk et al. 2008, Eroukhmanoff and Svensson 2011,
Wood and Brodie 2015, Walter et al. 2018, Chakrabarty and Schielzeth
2020) or slowly (Delahaie et al. 2017, Hangartner et al. 2020, and others
reviewed in Arnold et al. 2008). The only emergent conclusion from this
body of work is that the change in G depends on the traits under study. In
any case, it is clear that the locality of G introduces serious limitations in
using G to explain evolution in more than one generation, and specially for
macroevolutionary trends (Steppan 2002). Ultimately, because estimating
G is costly and time-consuming, understanding how fast it can change is
important since change reduces the predictive value of G (Eroukhmanoff
2009).

1.2 Evo-devo

Evolutionary-developmental biology, or evo—devo, is a field of research con-
cerned with the two-way interaction between phenotypic change that hap-
pens between generations during evolution, and individual development that
happens in each generation (Oster and Alberch 1982, Alberch 1982, 1991,
Maynard Smith et. al 1985, Raff 1996, Miiller 2007). In the most gen-
eral sense, development can be understood as all the changes that occur
in a given organism from its beginning as an egg to adulthood (or death,
Oyama 2000, Gilbert and Barresi 2016). Development is then the process
by which the phenotype of each individual is generated, and therefore the
process that creates phenotypic variation in each generation. The concept
of development can be applied to behavioral traits (Lickliter 2007, Hall
2013), but in this thesis and much of the evo-devo literature, I focus on
morphological traits.

During development, genes produce gene products that can regulate
the expression of other genes, or regulate cellular behaviours like cell di-
vision or migration, and cell mechanical properties, like elastic and shear
modulus (Garcia and Garcia 2018). Together with generic biophysical prop-
erties such as surface tension (Newman and Muller 2000) and affected by
random variations, these signals, behaviors and biomechanical properties
determine how the developing tissue interacts with its local environment,
leading to changes in its geometry. This changes in the spatial distribution
of cells will themselves affect gene expression and the interaction between
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cells by, for example, changing the relative distances between cells (and
therefore limiting or stimulating cell-cell signaling) or by changing the me-
chanical state of cells. In this way, development is a complex dynamical
process that occurs by a series of temporal and spatial interactions and
feedbacks between different parts at different levels of biological organiza-
tion (Alberch 1982, Newman and Comper 1990, Newman and Muller 2000,
Salazar-Ciudad 2006).

It is useful to conceptualize development as composed of several develop-
mental mechanisms. These mechanisms can be defined as the combination
of a genetic network with a given topology and the set of signals, cell be-
haviors and mechanical properties that are regulated by the network to
produce a given morphological transformation (Salazar-Ciudad 2006). In
this way, genes and gene networks are an important part of developmental
mechanisms, but do not act in isolation to produce a phenotype. Genes
participate in generating phenotypes only by interacting with other genes
and cell behaviors in a complex developmental mechanism. Therefore, ge-
netic substitutions can only result in phenotypic changes by modifying the
dynamical process of development. In this way, from the perspective of
evo-devo, the effect of a gene cannot be understood outside of a specific
developmental mechanism. Then, there is no inherit phenotypic effect than
can be assigned to a genetic change.

Because development is the process that generates morphologies, any
change in morphology must result from a change in development. Indeed,
genetic variation is produced by mutations, recombination and other chro-
mosomal rearrangements. However, these can only result in phenotypic
variation through development.

Phenotypic variation produced by a given developmental mechanism
can be described in a useful way by the concept of variational properties
(Salazar-Ciudad 2006). These properties can be defined as the set of mor-
phologies that can be generated by the developmental mechanism through
small changes in the intensities of the interactions among genes, cell behav-
iors and mechanical properties that compose the developmental mechanism.
In this way, the variational properties represent the set of possible morpholo-
gies that can be produced by the developmental mechanism and that can
interact with, for example, natural selection during adaptive evolution.

The concept of variational properties describes phenotypic variability
(i.e. the ability to produce variation) as opposed to statistical phenotypic
variance which is a way to describe realized variation. Variational properties
are operationally more complex to calculate than measuring variance, but
they incorporate all the information on the possible variation generated by
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development.

The concept of variational properties has been most successfully applied
when using computational models of development. Indeed, if enough about
the development of a given system is known, a computational model can
be created to represent the mechanistic hypotheses in mathematical terms.
These models require initial conditions and the network of interactions be-
tween genes, cellular behaviors and mechanics that make the developmental
mechanism. By modifying the parameters of that model, the variational
properties of the developmental mechanism can be simulated. A paradig-
matic example that is particularly important for this thesis is the model of
tooth development that has been used to study natural variation in seals
(Salazar-Ciudad and Jernvall 2010). The computational model summa-
rizes tooth development by incorporation a spatial context for cells, their
mechanics, and a gene network that regulates the cell behaviours of prolif-
eration and differentiation. The dynamics of the model are determined by
a set of parameters. Variation in those parameters is able to reproduce the
morphological variation found in a natural population, and allows to infer
what changes at the level of parameters can explain morphological changes
seen in the population.

Variational properties can help understand how development introduces
directionality to the evolutionary process. Indeed, evolution can only pro-
ceed in the directions where development produces phenotypic variation,
as natural selection can only act on existing phenotypic variation (Alberch
1982, Mayr 1982). In this way, it is both development and natural selection
that determine the direction of morphological evolution.

Historically, evo-devo has focused on studying patterns of conservation
and change over relatively large evolutionary timescales, such as between
species or larger taxonomic groups (Nunes et al 2013). The paradigmatic
example of this is the discovery that the developmental “toolkit” of genes is
mostly conserved across distantly related taxa and that phenotypic change
across such broad scales is often accompanied by spatial or temporal changes
in the expression of these conserved genes (Davidson 2001, Wilkins 2002,
Carroll et al. 2013). This body of work shows how rewiring an already-
existing developmental mechanism can result in large phenotypic changes
and allow for evolutionary divergence. On this line, there is also a large body
of work describing the genetic and developmental bases of the differences in
morphology between several species (e.g. Stern 1998, Loehlin and Werren
2012, Mallarino et. al 2012, Arif et. al 2013).

Most work in evo-devo has focused on macroevolutionary trends because
questions in evo-devo require detailed understanding of development, which
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in turn can only be achieved by the accumulation of data from experiments
in developmental biology. These experiments are largely carried out in a few
species known as “model species” which include mice and fruit fly. The rea-
son for this is that these animals are compatible with laboratory conditions,
and much technological development has occurred to ease experimentation
with these animals. In this way, the development of only a few organisms is
understood to enough degree of detail and therefore comparisons are made
between these evolutionarily distant organisms.

Evo-devo at the population level is in its infancy (Nunes et al 2013).
A main reason for this is that developmental mechanisms are for the most
part not understood to the level required to make predictions of how subtle
changes in development give rise to subtle, quantitative variation observed
in populations (Nunes et al., 2013, Parsons & Albertson, 2013). In this
way, there are no quantitative measures of how the theory described in this
section interacts with population-level phenomena such as natural selection.

1.3 The genotype-phenotype map (GPM) and the
conflict

A key conceptual difference between the Modern Synthesis, embodied in
quantitative genetics, and evo-devo, is how they treat the relationship be-
tween genotypes and phenotypes. In this section, I will briefly summarize
the ways the two fields conceptualize this relationship and show how these
conceptualizations can be conflictive with each other. This will lead to the
research questions of this thesis.

From the perspective of evo-devo, genes are part of developmental mech-
anisms that jointly determine phenotypes, together with biomechanics, noise,
interactions with the environment, cellular behaviors and signalling. In this
way, development is a complex system that is composed of many parts in-
teracting with each other. Alberch 1991 uses the metaphor of the genotype-
phenotype map (GPM) to summarize the complex process of development.
In his conceptualization, Alberch proposes the following equation

o = 12,0, (1)
where ® is the phenotype, d®/dt is the change in time of the phenotype
during development, 6; is a set of developmental parameters capturing the
dynamics of the developmental process and f is a developmental function.
Examples of developmental parameters are the diffusion rates of signal-
ing molecules and the strength of regulatory interactions between genes.



1.3 The genotype-phenotype map (GPM) and the conflict 13

Equation (1.5) says that the change in the phenotype at a given time is a
function of the phenotype at that time, and the developmental parameters.
This conceptualization allows to build a mapping from initial condition for
the phenotype and a set of developmental parameters, to a final phenotype.
Because developmental parameters are, at least in part, determined by the
genes, this results is a genotype-phenotype map: a function that assigns a
phenotype to each genotype.

Because development is a complex dynamical process that can, at least
in principle, be expressed with differential equations of the type given in ex-
pression (1.5), the resulting GPM possesses distinct features (Alberch 1991).
One key property of the GPMs associated with development is nonlinearity,
meaning that the same input (i.e. change in genotype or developmental pa-
rameter) results in different outputs (i.e. changes in phenotype) depending
on the state or context. In practical terms, this means that a small pertur-
bation may cause a large effect, a proportional effect, or even no effect at
all. In linear systems, the effect is always directly proportional to cause.

In quantitative genetics, the complex mapping of genotypes to pheno-
types is approximated with a statistical construct that maps the mean of
the genotypes to mean of the phenotypes (Feldman and Lewontin 1975, see
section 1.1 Quantitative genetics). This local linear description is given in
terms of additive genetic effects, as shown in equation (1.1), and summa-
rized by the concepts of additive genetic variance and the G-matrix. This is
the best local linear description possible, in the sense of least-squares, and
it has sometimes been compared to first-order approximation of a Taylor
series around the mean (Lewontin 1974, Hansen 2013). Assuming that the
GPM is smooth, the approximation will be arbitrarily good, in terms of
residuals, for some neighborhood around the mean. How small that neigh-
borhood is will depend on how good we want the approximation to be (it
is tautological on the mean) and on the GPM.

Importantly, what I here call linearity of the GPM is analogous to
the additivity of genetic effects explained in the section 1.1 Quantitative
genetics. That is, assuming that genes act additively and assuming a lin-
ear GPM are equivalent. The concept of additivity is far more common in
the quantitative genetics literature, but in this section I use the concept of
linearity as it is framed in terms of the GPM.

An important feature of the linear approximation of quantitative ge-
netics is that it does not require knowledge of the underlying development
that generates phenotypes. Indeed, even if the GPM is not linear, one
can estimate the best linear approximation around the mean. However,
as mentioned above, this description is purely local and, strictly speaking,
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nothing can be said about the suitability of the description outside the spe-
cific conditions in which it was calculated. Moreover, as explained before,
it is important to remember that the statistical description does not reveal
anything about the underlying biology that generates a phenotype, as dis-
cussed in section 1.1 Quantitative genetics. The statistical description is,
thus, a black box that admittedly does not give causal explanation for phe-
notypes, but that can be useful for certain applications, such as predicting
the response to selection in the short term.

The linear approximation of the GPM given in quantitative genetics can
be more than a local description only if we assume that the real GPM is
linear. In this case, the statistical abstraction fully describes the map, and
the local description is a global description. It is not surprising, then, that
much (but certainly not all) of quantitative genetics assumes implicitly or
explicitly that the real GPM is linear (e.g. Hill 2010). The assumption
of linearity is sometimes justified by the thought that in the absence of
any evidence, the linear function is the simplest hypothesis, so assuming
a linear map follows by Occam’s razor (Lewontin 1974). However, from
what we know from molecular and developmental biology, a linear map is
an unlikely option and no known developmental process results in a linear
GPM. The assumption that the real GPM is linear is then wrong, and in
direct conflict with what we know from evo-devo.

Without assuming that the real GPM is linear, and taking the statis-
tical description as a local approximation, some researches propose that
the framework is useful for some time, as long as one remains around the
population mean. Note that here I refer to the framework as “useful” for
a given objective, such as predicting the response to selection. This is in-
deed the metric used in quantitative genetics, a historically applied research
field, where many assumptions are justified because “they work” for a given
purpose (e.g. Hill 2014). This transforms a qualitative question into a quan-
titative one: how close to the mean should we be for the local description
based on additive effects to be useful? This question is tightly linked to
the question of how does the linear description changes with generations.
Indeed, if the local description changes slowly, then for all practical reasons
we can rely on it for several generations without fear of severe mistakes.
These two question are central to my thesis, and are addressed explicitly in
Publications I and II. To be clear, the questions are:

Q1. How good is the local statistical description when the genotype-
phenotype map is nonlinear?

Q2. How does the local statistical description change in time when the
genotype-phenotype map is nonlinear?
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Despite the importance of these question, there is a scarcity of work in
evolutionary biology directly addressing them. I will briefly go through the
most relevant works below.

Question 1 can be addressed by comparing the predictions of the breeder’s
equation with the observed change in the mean of the traits under study. In-
deed this is a practical measure of usefulness of the framework: if predictions
fail, this indicates inadequacy of the framework. To associate prediction er-
ror with the nonlinearity of the GPM, however, all other sources of error
must be controlled for. These sources include using wrong estimates of G,
P or s, random noise, or having an incomplete picture of the traits under
selection. As explained in section 1.1 Quantitative genetics, the emerging
picture from empirical work is that for multivariate traits, responses in-
consistent with the breeder’s equation are common. However, the sources
of these errors are rarely identified, and the possibility that errors may be
associated with the nonlinearity of the GPM is rarely explored.

From the theoretical side, Sean Rice’s framework to study evolution
(Rice 2002, 2004) shows that the breeder’s equation is not sufficient to
predict the response to selection for certain GPMs. Rice’s mathematical
framework is based on a complete description of the GPM using a Taylor
series, as an infinite sum of terms that are expressed in terms of the map’s
partial derivatives with respect to underlying developmental parameters,
evaluated at a single point. Further, he describes the (arbitrary) distri-
bution of underlying parameters in terms of its statistical moments. He
shows that if the GPM is nonlinear or if the underlying parameters do not
have a multivariate normal distribution, the change in the mean of a set of
traits is not accurately represented by the breeder’s equation. Carter et al.
2005 arrive to a similar conclusion using the multilinear model (Hansen and
Wagner 2001), which is less general than Rice’s framework but allows for
certain types of nonlinear GPMs while remaining mathematically tractable.
These works show that deviations from the breeder’s equation can happen
due to the nonlinear nature of the GPM, but do not directly address the
questions of how large and common we should expect these deviations to
be, particularly for the type of GPMs associated with the development of
complex phenotypes described earlier in this section.

Question 2 can be addressed directly by studying the evolution of the
G-matrix, which summarizes the statistical local description of quantitative
genetics. From the empirical side, as explained in section 1.1 Quantitative
genetics, there is a large body of work comparing G-matrices, but there is
no clear picture of how we should expect G to evolve. Moreover, this body
of empirical work does not focus on the GPM, and empirical comparisons
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are affected by multiple confounding effects which are rarely disentangled.
From the theoretical side, virtually all work studying the evolution of G
has been done under strong assumptions, including linearity of the GPM
(Turelli 1985, Slatkin and Frank 1990, Reeve 2000, Jones et al. 2003, 2012).
Under this assumption, the general consensus is that the shape of G is
relatively stable and ultimately determined by selection, with G fluctuating
randomly in each generation around this expected shape.

The situation is, then, that Questions 1 and 2 remain open and this gap
is the starting point for this thesis. Publications I and II answer Questions
1 and 2 respectively. For this, the model of tooth development briefly in-
troduced in section 1.2 Evo-devo was used to build large set of evolutionary
simulations. The model provides a realistic representation of the devel-
opmental process involved in tooth development, and therefore a realistic
GPM. Simulations allow to obtain enough data to build the best linear mod-
els at each time point, which is the best local description from quantitative
genetics possible without statistical limitations. The results from the first
two publications provided insight to build a novel method that improves
the predictions of the breeder’s equation when the GPM is nonlinear, but
also when other assumptions of the breeder’s equation are violated, a com-
mon occurrence as explained in section 1.1 Quantitative genetics. The novel
prediction method combines predictions of the breeder’s equation with past
records of the mean. The method is developed and applied to data of a
20-generation artificial selection experiment in the wing of the fruit fly in
Publication III.

1.4 Aims

The general aim of the thesis is to advance in the understanding of how
the genotype-phenotype map (GPM) affects evolutionary dynamics. The
specific aims of the thesis are:

1. Study how well the breeder’s equation predicts the response to se-
lection for a set of traits associated to a complex GPM, using tooth
development as a case study.

2. Study how the G-matrix and other relevant statistics of quantitative
genetics evolve for a set of traits associated to a complex GPM, using
tooth development as a case study.

3. Develop a method that improves the predictions of the breeder’s equa-
tion using insight from the results of Aims 1 and 2. Test the method
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in simulated data using a complex GPM, and on experimental data
that includes other possible sources of prediction errors.
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Chapter 2

Methods

In this chapter I will briefly explain the main methods used in the the-
sis. Details are given in the Methods sections of the original publications
included in this thesis.

2.1 The tooth development model

The complex genotype-phenotype map used for the evolutionary simulations
in this thesis is generated using a model of tooth development (Salazar-
Ciudad and Jernvall, 2010), schematically shown in Figure 2.1A. The model
is a computational representation of the development of teeth that includes
a spatial representation of cells, their mechanics, and a gene network that
regulates cell behaviors such as proliferation and differentiation.

The tooth model allows to simulate the dynamics of tooth development.
The simulation starts with a small, flat epithelium over a block of mes-
enchyme, closely resembling the earliest stages in tooth development (Fig-
ure 2.1A, Jernvall and Thesleff 2000). Cells produce signaling molecules
that diffuse in the extracellular space. There are three of these signaling
molecules. The first is an activator, which promotes its own synthesis and
secretion on epithelial cells. It also induces the differentiation of epithelial
cells into enamel knots, which are important signaling centers in tooth de-
velopment (Jernvall and Thesleff 2000). These enamel knots do not divide,
and produce the other two types of signaling molecules implemented in the
model: an inhibitor that inhibits the secretion of the activator in the cells
that receive it, preventing the formation of another enamel knot close to
an already-existing one, and a secondary signal that induces cell differen-
tiation, and in this way affects cell proliferation. The model also includes
growth biases to represent the fact that the tooth grows at different rates
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at the anterior and posterior borders, and generic forces of epithelial tis-
sues like cell adhesion. As a result of model dynamics the epithelium starts
growing downwards and soon the first enamel knot appears. As the tooth
epithelium keeps growing, new knots appear and the growing epithelium
between them becomes the valleys between the cusps of the forming tooth.
Thus, signaling and induction are taking place on the tissue, at the same
time as the tissue itself changes its shape, as shown in Figure 2.1B.

The model defines a number of parameters that quantify certain as-
pects of the cellular and signalling interactions, such as the growth rate of
cells, mechanical properties of cells, diffusion rates of signals and strength of
regulatory interactions between genes. There is a total of 21 of these devel-
opmental parameters, and different values of these parameters will change
the dynamics of development during the simulation and thus alter the final
phenotype generated (i.e. the final distribution of cells in three-dimensional
space, Figure 2.1D). In this way, the values of the developmental param-
eters, together with an initial condition are enough to run the model and
produce a final phenotype.

2.2 Evolutionary simulations

The tooth development model was embedded in a population model to
simulate evolution on a complex GPM. Data from these evolutionary sim-
ulations where used in all the publications of the thesis. Details of the
evolution model are given in the Methods section of Publication I. The al-
gorithm of the evolutionary simulations is schematically shown in Figure
2.1C. In brief, the evolution model considers four steps per generation:

1. The mapping between genotypes and developmental parameters. Each
individual has a diploid genotype with a fixed number of loci. Each
allele in a loci has a specific quantitative value. These genetic values
are added together to give the value of one of the 21 developmental
parameters required to define the dynamics of tooth development (see
section The tooth development model).

2. The mapping between developmental parameters and phenotypes.
This is the tooth development model, which takes the value of the
21 developmental parameters of each individual as input and provides
the 3D morphology of a tooth as an output. From the tooth mor-
phology, five traits are measured. These are the coordinates of three
landmarks located on the three tallest cusps of the tooth (see Figure
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Figure 2.1: A shows a scheme of the tooth development model. The model
explicitly simulates a sheet of epithelial cells, together with the genetic
network and the set of signals, cell behaviors and mechanical properties
that are regulated by the network during tooth development. B shows the
development of a an example tooth, where the eruption of the cusps can
be seen during 6000 iterations. C shows the algorithm of the evolutionary
simulations. Each individual in the population is modeled explicitly and
has a set of genetic values, which additively determine the values of the
developmental parameters. These parameters are mapped to a phenotype
using the tooth model. Selection, recombination and mutation are applied
in each generation. The G-matrix is calculated in every generation. D
shows an example of a phenotype produced by the developmental model,
and the location of the three landmarks on the three tallest cusps of the
tooth. E shows the five measured traits.
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2.1D-E). Note that each individual has a set of genetic values, a set
of developmental parameters, and a set of trait values.

3. Selection of parents for the next generation. Selection is implemented
by keeping the 50% males and females with trait values closest to
a predefined optimum. The optimum is defined at the beginning of
each simulation, and each simulation has a different optimum. To
generate the optima, each of the five morphological traits was chosen
to increase or decrease in respect to the initial reference morphology.
This leads to a total of 2° = 32 trait combinations as optima.

4. Reproduction, with recombination and mutation on the genotypes.
Once the parents are selected, they produce one gamete each by ran-
domly selecting one of the two alleles for each loci with equal probabil-
ity. The gametes of the parents then fuse to form the diploid genome
of the offspring, with a probability of alleles being mutated by adding
a normally-distributed random amount to it. Each parental couple
generates two male and two female offspring for the next generation.
This keeps the population size constant and results in all selected
parents having exactly the same fitness.

By iterating steps 1 to 4 in each generation, we simulated how the
genotypes and phenotypes of the population change over generations.

2.3 Artificial selection with the fruit fly

Artificial selection experiments on the wing of Drosophila melanogaster were
carried out and used to test the method developed in Publication III. To
build the starting population, 250 female flies were captured in Groningen,
The Netherlands during the Summer of 2017 by the Billeter’s lab. From
each isofemale line, 25 virgin females and males were collected and merged to
make a single large, outbred population that was maintained in laboratory
conditions. From this large population, 400 females and 400 males were
collected as virgins and randomly assigned to one of the four experimental
lines (i.e. 100 males and 100 females in each line). One line was used as a
control without selection, while the other three were subject to selection.
In each generation of the experiment, 100 male and 100 female virgins
were collected. The automatic system known as the wing machine (Houle et
al. 2003) was used to image the left wing of each anesthetized fly and locate
the position of five landmarks, as shown in Figure 2.2. In the control line,
50 females and 50 males were randomly chosen to be parents of the next
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generation. In the three lines with selection, the 50 females and 50 males
with wings closest to the optimum morphology were selected as parents.
The optimum morphology (see Figure 2.2D) was defined at the start of the
experiment and was the same for the three lines.

Selected parents were paired randomly. Two males and two females
were randomly collected from the offspring of each couple, resulting in the
100 males and 100 females of the next generation. The process of image
processing and selection was repeated in each generation for a total of 20
generations. Siblings were not allowed to mate to reduce inbreeding. If some
of the formed couples failed to produce offspring for the next generation, we
measured more offspring from other couples to complete the 200 individuals
per generation. We also formed three extra couples in each generation, to
provide extra individuals in case some of the original 50 couples failed to
produce offspring. Throughout the experiment the flies developed at 25°C.

As mentioned above, the phenotypic data in each generation are the
z- and y-coordinates of five landmarks on the wing, resulting in a total of
ten traits. However, because the data was aligned using Procrustes least
squares superimposition (Houle et al. 2003), four degrees of freedom were
lost (i.e. one to estimate wing size and three to standardize the orientation
of wing shapes). In this way, six independent traits remain in the data.

2.4 Quantitative genetics

Estimation of various statistics of quantitative genetics is central to the
thesis. Of most importance is the estimation of the additive genetic vari-
ances and covariances that make the G-matrix. As explained in the Intro-
duction, additive genetic variances and covariances can be estimated from
correlations between relatives. Classical methods include parent-offspring
regression and analyses of variance (ANOVA) applied to data of full-sib and
half-sib families (Lynch and Walsh 1998). However, the use of what is known
as “animal model” has become the standard for the estimation of additive
genetic variances and covariances (Kruuk 2004, Kruuk et al. 2008, Postma
and Charmantier 2007), in large part because it can incorporate information
from any type of relatives through complex and possibly incomplete pedi-
grees (Kruuk 2004). The animal model also has other desirable properties,
such as providing unbiased estimates of variance components by any effects
of finite population size, assortive mating, selection or inbreeding that may
occur during generations included in the pedigree. This is therefore the
method used in this thesis to estimate the G-matrix.

The animal model is a special type of linear mixed model, a linear re-
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Figure 2.2: A shows a scheme of the wing machine device (Houle et al.
2003) used to measure the wings of anaesthetised fruit flies. The wing
machine is connected to a pump that creates vacuum, sucking the wing
of the fly into the space between two microscope slides and allowing for a
picture of the extended wing to be taken using a microscope, as shown in
B. C shows the five landmarks used in the wings. D shows the direction
of selection (i.e. the optimum shape) for the five landmarks in the artificial
selection experiments.
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gression where the explanatory terms are a mixture of “fixed” and “random”
effects. An effect is modeled as fixed if the different levels can be described
as constants that change the mean of the distribution of phenotypes. A
classic example of fixed effect is sex. An effect is modelled as random if the
levels found in the data are a sample from a larger population, for which the
analysis provides an estimate of the variance associated to the effect rather
than a parameter for each factor level. Random effects therefore influence
the variance of the trait (Pinheiro and Bates 2000). The distinct feature
of the animal model is that it fits the breeding values of the individuals
as random effects. This allows to obtain an estimate of the variance in
breeding values which is defined as the additive genetic variance V4 in the
univariate case, and the G-matrix in the multivariate case (see section 1.1
Quantitative genetics). Note that a pedigree is essential for this, as it gives
the expected covariation of breeding values between pairs of individuals.
A general animal model has the form

z=XB+ Zu+e, (2.1)

where z is the vector of phenotypes for all individuals, B is the vector
of fixed effects, X is the design matrix relating the fixed effects to each
individual, w is the vector of random effects, Z is the design matrix for
random effects and e is a vector of residuals. As explained above, u must
include at least the breeding values, but possibly also other random effects
such as maternal effects. The simplest animal model possible then has X as
a vector of 1’s, 3 = p the population mean, Z = I the identity matrix and
u the vector of breeding values. This is the animal model used to analyze
the data from the simulations using the tooth model. For the estimations
of the artificial selection experiments in the fruit fly, additional fixed effects
were included to account for sexual dimorphism and the fact that multiple
people participated in measuring the wings.

With a model of the type given by equation (2.1), the record of phe-
notypes and a pedigree, additive genetic variance can be estimated using
a maximum likelihood algorithm (Lynch and Walsh 1998). The algorithm
works by finding the parameters that maximize the likelihood of observing
the data. More specifically, a restricted maximum likelihood (REML) al-
gorithm was used, which maximizes only the portion of the likelihood that
does not depend on the fixed effects (Meyer 1989). The development of the
equations of the REML algorithm can be found in Lynch and Walsh 1998
(Ch. 28). First, an expression of the log-likelihood of the parameters given
the data is obtained by assuming that the random effects and the residuals
have a multivariate normal distribution. Then, the partial derivatives of



26 2 METHODS

this expression with respect to the parameters are obtained. The equations
for the REML estimators are then obtained by setting these derivatives
equal to zero. These equations have to be solved numerically through a
recursive algorithm, since they are coupled and nonlinear. In this thesis,
this was done using the software WOMBAT (Meyer 2007, Houle and Meyer
2015).

2.5 The Kalman filter

The method developed in Publication III to predict the response to selection
uses the Kalman filter, which is a hallmark of control theory (Kalman 1960,
Astrom and Wittenmark 1997). The Kalman filter is a general algorithm
to estimate the value of a set of n state variables of interest, represented at
time 7 by the state vector x; € IR". For this, we need a transition model
that describes how we expect the states to change over time,

T = Ajx; + w;, (2.2)

where A; is a squared matrix describing how we expect x; to change and
w; is process noise vector. We also need an observation model, with relates
the state vector to a vector of measured variables, y;,

yi = Hizi + v;, (2.3)

where Hj describes the relationship between the measurements and the
states, and v; is the measurement noise vector.

The Kalman filter works in two steps, prediction and correction. In the
prediction step the states are projected forward in time from i — 1 to 1,
using the transition equation (2.2). This gives the a priori state estimate
at time ¢. It is called @ priori because it has not been combined with
the measurements at time, y;. This combination of information occurs
during the correction step. The important thing here is that we have two
independent sources of information about the underlying states at time 4.
On the one hand, we have an a priori estimate. On the other hand, we have
the measurements of the system that we obtain at generation 4, and that are
related to the states through the observation model given by equation (2.3).
What the Kalman filter does is a linear combination of these two sources
of information to obtain an a posteriori estimates of the states at time 1,
symbolized @;. The linear combination is determined by a weight matrix
called the gain, symbolized K;. This matrix is calculated as the trade off
between the confidence we have on the a priori estimate of the states and the
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confidence we have on our measurements at time ¢. If the measurements are
to be trusted, then the gain will give more weight to the measurements. If
the a prior: state estimates are to be trusted, then the gain will assign more
weight to it. The "trust" is quantified by the associated error covariance
matrices of the a priori estimate and the measurements. More specifically,
K; is found by minimizing the error covariance matrix E(e;el), where E()
is the expected value, T is the transpose operator and e; = x; — &; is the a
posteriori estimation error (Astrém and Wittenmark 1997).

Assuming that the equations (2.2) and (2.3) are the true representation
of the dynamical system, and that measurement noise is independent and
gaussian stochastic process, the Kalman filter provides the optimal solution
for estimation of the state vectors, in the sense that it is unbiased and of
minimum variance (Astrém and Wittenmark 1997). In Publication III of
this thesis, we introduce a novel method to predict the response to selection
that combines the Kalman filter with the breeder’s equation.
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Chapter 3

Main results and discussion

3.1 Local GPMs

A key feature of the evolutionary simulations in this thesis is that the
genotype-phenotype map (GPM) emerges from explicitly simulating the
development of each individual’s phenotype in the population, using the
tooth model. The tooth model is composed of coupled differential equa-
tions that define the change in time of position, gene expression, cellular
behaviors and mechanical properties for each cell during development, until
the final phenotype is obtained (see equation (1.5) and Methods). The equa-
tions use a set of developmental parameters, such as diffusion rates, that
are additively determined by genes. These parameters specify the dynamics
of development and ultimately, the phenotype.

As shown in Figure 3.1, evolution occurs in three spaces: phenotype
space, developmental-parameter space and genotype space. The genotype
of an individual is a point in genotype space. This point is mapped addi-
tively to a point in developmental-parameter space (see Methods). Finally,
this point in developmental-parameter space is mapped to a point in phe-
notype space through the tooth development model. As selection acting on
phenotypes pushes the population to move in the phenotypic space in the
direction determined by the optimum, it also results in the distribution of
genotypes and developmental parameters to change.

The dynamics of the developmental process are different for different
combinations of developmental parameters (see equation (1.5)). In this
way, as the population evolves, the relationship between genotypes and phe-
notypes changes because the dynamics of development themselves change.
Thus, the population experiences different local GPMs with different char-
acteristics during its evolutionary trajectory. In this way, the local GPM
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for a population at a given time is given by the distribution of genotypes in
the population at that time, and by the developmental dynamics that map
it to a distribution of phenotypes.

A population experiencing different local GPMs in its evolutionary tra-
jectory is given in Figure 3.1 for different time points 1, 2, 3 and 4. At
each time point, the local characteristics of the GPM are different. This is
reflected in changes in the slope of the best local linear description used to
make predictions with quantitative genetics, which is represented in Figure
3.1 as the plane that is tangent to the surface of the GPM at the population
mean in each time point (see also Rice 2008).

The work in this thesis shows that experiencing different local GPMs
has important consequences in evolutionary dynamics. Most importantly,
as explained in the sections below, it results in the breeder’s prediction
sometimes failing to predict the response to selection and in different ways
in which the G-matrix evolves.

3.2 The local GPM and the response to selection

The main finding of Publication I is that single-generation predictions using
the breeder’s equation can be biased when the local GPM is nonlinear, and
that this happens often for GPMs based on development. The word bias is
used here to emphasize that the prediction errors are systematic, not purely
stochastic.

We found that the prediction bias when using the breeder’s equation was
larger when the local GPM was more nonlinear (Figure 3.2A). This means
that the breeder’s equation correctly predicted change when the map was
locally linear (e.g. 1 and 3 in Figure 3.1), but could be biased when the
map was locally nonlinear (e.g. points 2 and 4 in Figure 3.1). Indeed,
the local linear description of quantitative genetics is arbitrarily good for
a neighborhood of the mean, but how small that neighbourhood is will
depend on the nonlinearty of the GPM itself. If the GPM is very nonlinear
(e.g. point 4 of Figure 3.1), then this neighborhood may be very small and
nonlinearities will affect the dynamics of a population distributed around
that mean. Note that the breeder’s prediction is given as a change in the
mean of the population from one generation to the next. The process of
taking the population mean implies integrating the trait values over their
distribution, which is effectively equivalent to smoothing the GPM. Even
with this smoothing effect, the predictions can be biased.

The largest nonlinearities in the GPM, which were associated with the
largest prediction biases, occurred where small genetic changes led to large
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parameters
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Figure 3.1: The local characteristics of the genotype-phenotype map (GPM)
change as the population evolves. The figure shows genotypic space,
developmental-parameter space and phenotypic space. The population at
four timepoints is shown as a cloud of points in each of these spaces, with
each point representing an individual. The linear approximations to the
GPM that is used in G-matrix models is represented as a tangent plane
plotted in black. The plane fits the local GPM well at some points (1 and
3) and not well at others (2 and 4, shown with a different angle in the inset).
The latter are associated with prediction biases when using the breeder’s
equation. Note that the orientation of the plane changes dramatically de-
pending on the where the population is located. This is reflected in the
ways in which the G-matrix evolves. The tooth morphology closest to the
population mean at each time point is shown below.
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phenotypic changes (e.g. time point 4 of Figure 3.1). This can be seen as
discontinuities in the GPM, where the linear approximation is particularly
bad. This was most frequently the case for the traits related to the distance
between cusps (see traits 2 and 4 in Figure 2.1), where a small change in
the developmental parameters can lead to a relatively large change in the
positioning of the cusps as shown with the morphologies in Figure 3.1.

An extreme case of large nonlinear behavior was the loss of one of the
lateral cusps during evolution, which can be classified as a novelty (Wagner
and Lynch 2010). In these situations, the predictions using the breeder’s
equation was heavily biased. Even though it can be argued that the study
of novelties is not within the scope of quantitative-genetic methods (Polly
2008, Hansen 2008), it is worth noting that the loss of cusp was not a rare
event in our simulations. Indeed, it occurred at some point of the 30 gen-
erations in 10 out of the 32 evolutionary simulations, each with a different
optimum. This was particularly the case for simulations in which the lateral
cusps were selected to become smaller and more distant to the central cusp.
In these cases, small changes in the diffusion of the molecules as a response
to selection for smaller and distant cusps led to some individuals not form-
ing lateral cusps, as not enough of the activator molecule could accumulate
for the formation of an enamel knot, which later in development becomes a
cusp (see Methods). In this way, a small quantitative change in the diffusion
of a molecule lead to a qualitative change in the final morphology. For a
complex GPM like the one we use, then, the difference between quantita-
tive and qualitative becomes blurred, raising the question of how separable
these types of changes really are.

Previous theoretical work (Rice 2002, 2004, Carter et al. 2005, Heywood
2005) shows that the response to selection may not be correctly predicted by
the breeder’s equation when the GPM shows certain types of nonlinearities.
However, this body of work does not address the question of how common
and large we should expect these prediction errors to be for realistic GPMs,
so it is not clear if they are of empirical importance. Indeed, if nonlinear
behavior of the type that leads to prediction errors is uncommon, then
one can effectively rely on the linear model for most practical applications
(Hansen 2013). We show in our simulations that for a realistic GPM based
on development, these nonlinearities are common and that the resulting
prediction errors can be large. Indeed, as shown in Figure 3.2B, we found
that for traits related to the distance between cusps (i.e. traits 2 and 4), the
median of the prediction bias for single generation prediction was 13% of the
observed change, with an interquartile range of 7-32 % of relative bias (see
trait 4 in Figure 3.2B). Note that this is for single-generation predictions,
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Figure 3.2: A shows that the relative prediction bias (i.e. difference between
observed and predicted change, divided by observed change) is larger when
the local GPM is more nonlinear for the simulations using the tooth model.
B shows the distribution of prediction bias when predicting the response to
selection for each trait in the tooth morphology. C shows the amount of
additive genetic variance in the direction of selection for example simulation
10. D shows shows a schematic representation of the types of changes that
can be observed in G in our simulations. The G-matrix is plotted here
as ellipses with axes in the direction of the first two eigenvectors, and the
length of each axis proportional to the corresponding eigenvalue. E shows
the evolution of the G-matrix in example simulation 6 at five time points.
Details of A-B and C-D-E are given in Publication I and II, respectively.
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with the best G-matrix possible in each generation, and excluding the cases
where the cusp is lost, which would seriously inflate the median prediction
error.

Prediction errors when using the multivariate breeder’s equation have
been reported empirically (e.g. Sheridan and Barker 1974, Campo and Raya
1986, Roff 2007, Pujol et al 2018, Shaw 2019, Pélabon et al. 2021) and seem
to be quite common. However, multiple sources of these errors exist, includ-
ing wrong estimates of G and omitting traits in the analysis (Shaw 2019,
Pujol et al 2018). These sources of error are rarely disentangled, and studies
within the framework of quantitative genetics rarely consider the nonlinear-
ities of the GPM as a possible source of error for short term prediction. This
is partly rooted in the fact that the genetic interactions that are part of de-
velopment have been largely regarded as having a negligible contribution
to the response to selection, and therefore rarely considered to explain the
deviations from predictions (Hill et al. 2008, Crow 2008 and section The
nonlinearity of the GPM is not noise below). By realistically simulating
these interactions, the results from our simulations show that the nonlin-
earity of the GPM should be more often considered as a possible source
of errors when predicting the response to selection using the framework of
quantitative genetics.

3.3 The local GPM and the evolution of the G-
matrix

The main result from Publication II is that, as the population experiences
different local GPMs in our simulations, this leads to different patterns
of variation and covariation in the morphologies, and thus to different G-
matrices. In this way, if the GPM changes rapidly in the evolutionary
trajectory of the population, so will the G-matrix. In turn, if the local
GPM stays roughly the same in the trajectory, G will remain constant.
We performed an extensive study of how G evolves in the simulations,
using multiple metrics of change. We classified the change in G in five
categories, based on how the eigenvectors and eigenvalues of G change. For
this, we measured the change in time of the size of G (i.e. the sum of the
eigenvalues), the direction of the main eigenvector of G, and the eccentricity
of G (i.e. how much of the total additive genetic variance is distributed along
the main eigenvector). The five categories of change for G we found are:

A. Constant G: the eccentricity and size of G remain constant over gen-
erations.
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B. Proportional G: the size of G changes while keeping the same eccen-
tricity. This means G either shrinks of expands.

C. Disproportional G: the eccentricity of G changes. The size may or
may not vary.

D. Rotation of G: the direction of the main eigenvector of G' changes.

E. Sudden changes in G: relatively rapid changes in eccentricity, size or
orientation of G can occur in nonlinear regions of the GPM.

These changes are shown schematically in Figure 3.2D. In a single sim-
ulation, the G-matrix can experience several different kinds of changes,
as shown for an example in Figure 3.2E. While category A was the most
frequent in the simulations, all other categories were found in significant
amounts accounting for at least 42% of the changes (details in Publication
IT). Note that these changes are deterministic, in the sense that they are
not stochastic fluctuations but rather structured ways in which G evolves
as a reflection of how the local GPM changes.

The multiple ways in which G can change that we find in our simula-
tions have been reported empirically in various systems (e.g. category A in
Hangartner et al. 2020, category B in Blows and Higgie 2003, category C in
Doroszuk et al. 2008, category D in Walter et al. 2018, category E in Bjork-
lund et al. 2013) but have not generally been linked to the GPM. Further,
most of these types of changes in G have never been reported in theoret-
ical work. This is because the large majority of previous theoretical work
has assumed that the GPM is linear (Turelli 1985, Slatkin and Frank 1990,
Reeve 2000, Jones et al. 2003, 2012, 2014, Arnold et al. 2008). The general
consensus coming from this body of work using linear GPMs is that the ex-
pected shape of G is ultimately determined by selection, with G fluctuating
randomly in each generation around this expected shape. These stochastic
fluctuations around the expected G can be larger or smaller depending on
certain population parameters such as population size and the strength of
selection. Much of the previous body work is focused on stabilizing selec-
tion, but similar dynamics are reported with a moving optimum (i.e. when
there is directional selection, Jones et al. 2012). In this later case with
a moving optimum, the authors additionally found that immediately after
a shift in the optimum, the strength of directional selection spikes and G
has a subtle increase in size and eccentricity, as the population responds to
this directional selection. However, the size and eccentricity of G decreases
again once the population reaches the optimum. The authors find that this
pattern is repeated in the same way each time the optimum moves.
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There are several differences between how G evolves in our study and in
previous theoretical studies. In our study the changes in GG are not stochastic
fluctuations nor small, transient and repeatable changes following a shift in
the optimum. On the contrary, the types of changes in G that we observe in
our simulations have a large deterministic component as observed in changes
of the eccentricity, size and orientation as the population evolves. That
is, they are not random fluctuations that can be controlled by modifying
population parameters, but actual changes in variation and covariation that
arise from the fact that the population experiences different local GPMs as
it evolves. These changes in G cannot be observed if the GPM is assumed
linear.

The high complexity of our GPM also allows to see changes in G that can
be much larger than the changes reported under the assumption of a linear
GPM. Indeed, we find that different measurements of G such as its size can
change in more than 100% in only a few generations (see Figure 3.2E for an
example). With the inclusion of genes of large (additive) effects, Agrawal
et al. 2001 also report fast and large changes in GG that are not stochastic
in nature. However, a key difference is that the changes in Agrawal et al.
2001 are reversible and transient, as they depend on the large-effect gene
to be segregating. In our case, the changes observed in the G-matrix are
not necessarily reversible, as they are determined by the local GPM the
population is experiencing.

An aspect of G that has received special attention is its projection on
the direction of selection, which has been called evolvability when properly
standardized (Hansen and Houle 2008). Some authors suggest that this
quantity should increase in evolution as a direct result of selection (Jones
2012, 2014, Pavlicev 2011). This would occur by selection increasing the
frequency of the alleles associated with favorable correlations among traits,
and decreasing the frequency of those associated with unfavorable corre-
lations. As a result, G would reorient to increase its projection in the
direction of selection (Jones et al. 2014, Pavlicev 2011). This implicitly
requires a GPM that can change in any direction. On the contrary, we find
that V4 in the direction of selection can increase, decrease or remain con-
stant depending on the trajectory of the population across the GPM in our
simulations, as shown for an example in Figure 3.2C. Indeed, the amount
of V4 in a given direction will be given by how the genetic variation maps
to phenotypic variation. If the population enters a region of the GPM that
produces much adaptive phenotypic variation given small genetic changes,
as in generation 40 in the example given in Figure 3.2C, this will result in an
increase in the amount of V4 in the direction of selection. On the contrary,
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if the population enters a region where genetic variation is mapped to little
adaptive phenotypic variation, then V4 will decrease. These results further
extend the insights from simpler models that include nonlinear GPMs and
find that Vy in the single-trait case has different dynamics than those ex-
pected by linear GPMs (Carter et al. 2005, Hansen 2006, see also Rice
2004).

3.4 The nonlinearity of the GPM is not noise

When included, the interactions between genes enter applied quantitative-
genetic models as statistical deviations from additivity, akin to noise (Fisher
1958, Hill et al. 2008, Crow 2008, 2010, Hansen 2013, Nelson et al. 2013,
and section 1.1 Quantitative genetics). Modeling genetic interactions as
noise is compatible with the linear regressions that form the basis of quanti-
tative genetics, but effectively erases the structure of the GPM. This occurs
because noise cannot represent specific patterns of interactions that result
in curvature of the GPM (Rice 2002, 2004, Hansen 2006). Modelling inter-
actions as noise thus obscures the influence of the curvature of the GPM in
evolutionary dynamics.

Previous work shows that if the GPM includes certain patterns of in-
teractions, this has systematic effects on evolutionary dynamics that are
not captured when modelling interactions as noise (Rice 2004, Carter et
al. 2005, Hansen 2006). For example, as explained in the Introduction,
Rice (2002, 2004) uses his framework to show that for certain functional
relationships between underlying developmental parameters and traits, the
breeder’s equation is not enough to predict the response to selection. More-
over, Carter et al. 2005 use the multilinear model (Hansen and Wagner
2001) and find that despite deviations from the breeder’s equations be-
ing negligible for single-generation predictions, the system quickly deviates
from the linear prediction through rapid changes in the amount of additive
genetic variance in the presence of signed epistasis (i.e. when epistatic in-
teractions have an average tendency to reinforce or diminish each other’s
effects). The work in this thesis further proves these claims, and impor-
tantly shows that GPMs with such characteristics are to be expected when
using a realistic model of development.

In our simulations, the deterministic and causal role of the GPM in
evolutionary dynamics was evidenced by the finding of systematic bias using
the breeder’s equation for single-generation predictions, as well as in the
different deterministic ways in which we found the G-matrix to evolve. Both
effects on evolutionary dynamics are a consequence of the structure of the
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GPM.

The discussion above highlights the fact that the way in which we model
the GPM will determine the evolutionary roles we can attribute to the GPM.
In this sense, the work in this thesis is valuable because instead of propos-
ing an arbitrary GPM, we model the development of each individual using
a realistic model of the development of a complex organ, and from this a
realistic GPM arises. Previous work (Ombholt et al. 2000, Gjuvsland et al.
2007, 2011, 2013) uses a similar approach to represent the GPM using gene
networks. This body of work is of relevance because it connects properties
of genetic networks to summary statistics of quantitative genetics, and high-
lights the importance of describing the GPM as arising from a dynamical
System.

Dynamical systems present a set of generic properties such as context
dependency and nonlinearity. These generic properties result in the inter-
esting evolutionary dynamics reported in this thesis, so we should expect
these dynamics to be common for other GPMs associated with dynami-
cal systems, including the development of other organs (e.g. Newman and
Miiller, Urdy 2012), RNA folding (e.g. Schuster et al. 1994, Aguirre et al.
2011) and gene networks (e.g. Wagner 1996, Cotterel and Sharpe 2010).
In this way, even though the results presented in this thesis are specific to
the GPM generated by tooth development, the results should be regarded
as indicative of the general properties of GPMs that arise from complex
dynamical systems. Importantly, this realistic representation of the GPM
uncovers important implications of the GPM on evolutionary dynamics that
remain hidden with simplified models.

3.5 Using the local GPM to improve predictions

As explained above, when the GPM is nonlinear, the breeder’s equation can
be biased for single-generation predictions and the G-matrix can change
relatively fast. Both of these features negatively affect our ability to predict
evolution using the breeder’s equation. Indeed, because G is so cumbersome
to estimate, in practice one uses a single estimate of G to predict change in
several generations under the assumption that it remains constant (Walsh
and Lynch 2018). If the G-matrix does change in that period, this will
negatively affect the predictive capacity of the breeder’s equation. Further
problems arise when applying the breeder’s equation in real populations
since, as mentioned in the Introduction, any violation in the assumptions
underlying the breeder’s equation can result in prediction errors. Common
violations include the fact that ultimately we only have estimates of G,
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which can be wrong, particularly when G is estimated with data from a
different population (Pigliucci 2006) or when not accounting for relevant
effects (e.g. maternal effects, Pujol et al 2018, Walsh and Lynch 2018).
Another common violation occurs when the traits chosen for study do not
account for all selection (Pujol et al. 2018, Shaw 2019).

An important feature of the error arising from these violations in the
assumptions of the breeder’s equation is that it is systematic. For example,
if a trait under selection is missing from the analysis, the prediction using
the breeder’s equation can be biased because there is an indirect effect
of selection that is systematically omitted in the prediction (Merila et al.
2001). Moreover, if the G-matrix has changed rapidly, for example because
the local GPM has changed, predictions will also be biased because the G
used for predictions has changed in a systematic way, as explained in the
previous section.

The presence of a systematic bias in the predictions means that the error
is not purely stochastic, but somewhat structured. In other words, the error
at a given generation 7 is informative of the error at generation ¢ + 1. This
indicates that there is potential to improve predictions by incorporating this
bias, if one could hold the information of past generations as a “memory”.

The insight above motivated the development of a novel method to
predict the response to selection in Publication III. The method estimates
the change in the mean of the traits in each generation as the the breeder’s
equation plus a bias term. Change is then estimated at generation i by
combining information from the previous recorded change in the mean at
i—1 and the breeder’s equation, as schematically shown in Figure 3.3A. The
combination of information is done using a Kalman filter, with parameters
fitted in each generation using a machine-learning algorithm on the record
of past changes. Importantly, the novel method will correct any type of
prediction bias in the breeder’s equation.

The novel prediction method was applied to the simulations using the
tooth development model, and to a 20-generation experiment using the wing
of Drosophila melanogaster where a total of 16000 flies, 200 per generation,
where measured in three selection lines and a control (see Methods). The
experiments with the fruit fly include the full complexity of predicting the
response to selection. We show that in both sets of experiments, the new
method outperforms the breeder’s equation in its ability to predict the re-
sponse to selection when some of the assumptions of the breeder’s equation
do not hold.

Figure 3.3B compares the prediction of the breeder’s equation and the
new method for the change in the mean of one of the traits in one of the
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selection lines of the artificial selection experiments with the fly (see Pub-
lication IIT for details). The figure shows that the new method provides
better prediction than the breeder’s equation (i.e. closer to the observed
change).

Figure 3.3C gives a summary of the total prediction error for the breeder’s
equation and the new method, for the three selection lines of experimental
evolution on the wing, and using G-matrices estimated at the start of the
experiment with different degrees of precision. Precision was given by the
number of generations of the control line used to make estimates of the
G-matrix, which we call the pedigree depth. Naturally, a more precise es-
timate of G is more expensive to obtain as it requires more generations of
data. The figure shows that the new method gives better predictions re-
gardless of how accurate the G-matrix is. For example, for a pedigree depth
of 2, the new method reduces the prediction error of the breeder’s equation
by 27%, 60% and 52% for replicate lines 1, 2 and 3 respectively. Further,
the figure shows that the new method using an inaccurate G-matrix yields
better predictions than the breeder’s equation using a very accurate, and
expensive to estimate, G-matrix. Moreover, the method is able to provide
good prediction even when G is not estimated at all, which corresponds to
pedigree depth 1 in the z-axis of Figure 3.3G.

The method is mostly developed using tools of quantitative genetics,
including the breeder’s equation. However, it’s development is rooted in
insight from evo-devo. Therefore, the method can be considered to com-
bine knowledge from both fields. The method also combines different types
of information: past and present. Past information is incorporated by the
recursive nature of the model, as it forecasts the variables of interest using
past estimates of the variables (see Figure 3.3A). This is combined dynam-
ically in each generation with present information given by selection acting
in each generation. The combination of approaches and types of infor-
mation distinguishes the method from other valuable recent efforts to use
recursive models to make predictions of future evolution (Le Rouzic et al
2011, Nosil et al. 2018, Rescan et al. 2020, Nosil et al. 2020, Rescan et
al. 2021). Indeed, several authors advocate the combination of multiple
sources of information and approaches to improve predictions (Nosil et al
2020). This reflects the current needs in much of the biological sciences,
where the amount of data has surpassed the ability of existing methods to
integrate all the information. The method in Publication III is a contribu-
tion in this direction.
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Figure 3.3: A shows a simplified version of the algorithm used in the new
method to predict the response to selection developed in Publication III. In
each generation, the prediction of the breeder’s equation is combined with
the last observed change and used to provide the best possible estimate of
the change in the mean of the trait for the next generation. B shows the
change in the mean of one of the traits (symbolized Ag) in line 1 of the
artificial selection experiments using the wing of the fruit fly. The observed
change is shown in black, and the predictions using the breeder’s equation
and the new method are shown in orange and purple respectively. C shows
the total error of the prediction using the breeder’s equation (orange) and
the new method (purple) for the 3 selection lines of the experiments with
the fruit fly (squares correspond to line 1, circles to line 2 and triangles to
line 3). The new method outperforms the breeder’s equation for all pedigree
depths.
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Chapter 4

Conclusions

The fact that the mapping between genotypes and phenotypes, or GPM,
is complex and nonlinear is widely accepted among biologists. How this
nonlinearity affects evolutionary dynamics, however, remains a central open
question in evolutionary biology. This is particularly the case when studying
microevolution at the population level. In quantitative genetics, the GPM
is approximated with a linear statistical abstraction which is assumed to
capture all the information about the GPM that is relevant for evolutionary
dynamics, at least in the short term. We find that this is not necessarily the
case when then GPM is nonlinear, by answering Questions 1 and 2 posed
in the Introduction:

Q1. How good is the local statistical description when the genotype-
phenotype map is nonlinear?

Q2. How does the local statistical description change in time when the
genotype-phenotype map is nonlinear?

First, we find that the prediction of the change in the mean of the traits
in response to selection using the linear abstraction can be biased when the
GPM is nonlinear. In other words, there can be a significant part of the
response to selection that is missed by the linear approximation when the
GPM is very nonlinear. Second, we find that the dynamics of how the local
linear description changes in time are also highly dependent on the GPM,
and differ substantially from what is expected for a linear GPM. These
dynamics, which we classify and study in detail, are not purely stochastic,
but rather deterministic ways in which the linear approximation changes as a
reflection of changes in the local GPM. All in all, these results highlight how
the GPM determines evolutionary dynamics, even for short-term evolution
at the level of population. Importantly, this insight about the GPM inspired
the development of a novel prediction method for the response to selection
that provides improved predictions.
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44 4 CONCLUSIONS

The work in this thesis shows that rather than being a nuisance, the
structure of the GPM contains information that has the potential to improve
our understanding of evolutionary processes. This insight can be exploited
for applied purposes such as improving our ability to predict evolution,
but potentially also for other applications that require understanding how
genetic information relates to phenotypes, such as personalized medicine
and risk assessment. Understanding the GPM should then be a central
objective of 21st century biology.
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