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Predicting evolution remains challenging. The field of quantitative genetics provides
predictions for the response to directional selection through the breeder’s equation,
but these predictions can have errors. The sources of these errors include omission of
traits under selection, inaccurate estimates of genetic variance, and nonlinearities in
the relationship between genetic and phenotypic variation. Previous research showed
that the expected value of these prediction errors is often not zero, so predictions are
systematically biased. Here, we propose that this bias, rather than being a nuisance,
can be used to improve the predictions. We use this to develop a method to predict
evolution, which is built on three key innovations. First, the method predicts change as
the breeder’s equation plus a bias term. Second, the method combines information from
the breeder’s equation and from the record of past changes in the mean to predict change
using a Kalman filter. Third, the parameters of the filter are fitted in each generation
using a learning algorithm on the record of past changes. We compare the method to
the breeder’s equation in two artificial selection experiments, one using the wing of the
fruit fly and another using simulations that include a complex mapping of genotypes
to phenotypes. The proposed method outperforms the breeder’s equation, particularly
when traits under selection are omitted from the analysis, when data are noisy, and when
additive genetic variance is estimated inaccurately or not estimated at all. The proposed
method is easy to apply, requiring only the trait means over past generations.
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Evolutionary prediction is an important and active field within evolutionary biology
(1–4). Aside from its theoretical value, predicting evolution has important applications,
such as developing strategies for the persistence of populations amid rapid environmental
change (5) and designing interventions to control the spread of a disease (6).

Quantitative genetics is a widely used approach to study and predict short-term
evolution of continuous traits (7, 8). The backbone of this theory is the breeder’s equation
(9, 10). In its multivariate form, it provides predictions of the change in the mean of a set
of traits, from one generation to the next, in response to directional selection:

Δz̄ i =GiP
−1
i s i , [1]

where Δz̄ i = z̄ i+1 − z̄ i is the vector of change in trait means from generation i to
i + 1; Gi and Pi are additive genetic and phenotypic variance–covariance matrices
between traits in generation i , respectively; and s i is the vector of selection differentials in
generation i .

A major appeal of the equation is that its elements can be estimated without detailed
knowledge of the genetic architecture and development underlying the focal traits. Indeed,
estimates of Gi and Pi can be obtained using only phenotypic data and known genetic
relatedness among individuals in a population (11, 12), while estimates of s i need
knowledge of individual fitness (8, 13). The simplicity of the equation, however, is
achieved at the cost of some assumptions.

The breeder’s equation assumes an infinitesimal model of genetic effects (i.e., a large
number of loci, each of small effect) or at least a linear parent–offspring regression (and
a few additional assumptions) (8, 14). It further assumes linkage equilibrium, Hardy–
Weinberg proportions, random associations of environmental effects, and that the traits
being analyzed are uncorrelated with other unmeasured traits under selection (2, 8, 13).
Moreover, the equation is local, meaning that the accuracy of the predictions can only be
ensured for a single generation (8).

When applied to real systems, the assumptions of the breeder’s equation are violated to
some extent. A common violation is the so-called missing character problem, where the
particular traits chosen for study do not account for all selection (2, 15). Another violation
arises when the equation is used to predict the response for several generations under
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the assumption that the statistical parameters remain constant
over these generations. However, the constancy of the G matrix
is a debated issue (16, 17) since it can be affected by mutation,
drift, and selection itself (18), and work on nonlinear genotype–
phenotype maps (19) and gene–environment interactions
(20, 21) shows that the G matrix can change rapidly even in
a few generations. This issue is aggravated by the fact that the
breeder’s equation assumes that the real statistical parameters
Gi , Pi , and si are known without error; in reality, these are
inaccessible parameters that must be replaced by estimates. While
this is not strictly a violation of the assumptions, this introduces
uncertainty and possibly biases to the predictions, particularly
when Gi is estimated and used in different environments (22) or
when relevant effects are not controlled for during the estimation
of Gi [e.g., maternal effects (7, 8, 15)].

Indeed, when applied to real systems, violations of the as-
sumptions of the breeder’s equation can lead to prediction errors
(2, 8, 14, 15, 23–25). A notable example is the problem of
stasis (2, 26), where no response to selection is observed in a
population that both has ample additive genetic variance and
is under strong directional selection [e.g., body size in several
species, including Soay sheep and red deer (26)]. Prediction errors
have also been reported in artificial selection experiments when
the parent–offspring regression is nonlinear (23, 27) and when
selection is applied in the direction opposite to the sign of the
genetic correlation between the two traits under selection (7).

An important feature of the prediction errors when using the
breeder’s equation is that their mean over time can be nonzero
(14, 25), indicating the presence of a systematic bias. For example,
if a trait under selection is missing from the analysis, the prediction
using the breeder’s equation can be biased because there is an
indirect effect of selection that is systematically omitted in the
prediction (26). Moreover, if the G matrix has changed from its
original estimate, predictions will also be biased because the G
used for predictions is incorrect. In this way, the total prediction
error (i.e., the difference between the prediction of the breeder’s
equation and the true response to selection) is composed of
two parts. One part of the error is stochastic due to drift and
measurement noise. The other part is deterministic, a systematic
bias. Due to this systematic bias, the error at a given generation
i is informative of the error at generation i + 1. This indicates
that there is potential to improve predictions by incorporating
this bias if one could retain the information of past generations
as a “memory.”

Here, we propose a method to predict the response to direc-
tional selection that yields better predictions when some of the
assumptions of the breeder’s equation do not hold. The method,
which we refer to as the KF method, uses the record of the
means of the traits in past generations to improve predictions.
There are three key innovations in the method. First, it uses
a model for the change in the mean of the traits that is the
breeder’s equation plus a bias term, which is the term with
memory. Second, the method predicts the change in the traits
and the bias in each generation using a Kalman filter (28).
The filter integrates the information of the breeder’s equation
and the record of past means of the traits, and it efficiently
deals with the stochastic component of the prediction error.
Third, the method incorporates a learning scheme to learn the
parameters of the filter required to provide predictions in each
generation.

The Kalman filter is a hallmark of signal processing theory
(28, 29) and has a wide variety of technological applications from
navigation of aircrafts to econometrics. The filter is a general
algorithm that allows the estimation of the value of a set of

variables of interest using a model of how the variables are expected
to change and a series of measurements observed over time. Here,
we adapt it to be used in the prediction of the response to selection.

In Results, we first develop the KF method in three parts. Part
I: The Breeder’s Equation Plus a Bias Term is the introduction of
the extended equation that consists of the breeder’s equation plus
a bias term. Part II: The Kalman Filter is the development of the
Kalman filter for this application. Part III : Learning the Parameters
of the Kalman Filter is the explanation of the learning algorithm
to learn the parameters of the filter at each generation. Later in
Results, the KF method is used to predict the response to selection
in two artificial selection experiments. The datasets are used to
explore common situations where the assumptions of the breeder’s
equation are violated to some extent, as explained above.

Results

Part I: The Breeder’s Equation Plus a Bias Term. We want to
predict the change in the mean of a set of traits between gener-
ations, Δz̄ i . We propose the following equation consisting of the
breeder’s equation plus a bias term b i , a vector of length equal to
the number of traits:

Δz̄ i =GiP
−1
i s i + b i . [2]

The bias term can be understood as the part of the response to
selection that is not captured by the breeder’s equation and that
arises from violations of assumptions. As such, the systematic bias
is structured, and we expect the bias of generation i − 1 to be
similar to the bias at generation i (14, 25).

Here, we propose to estimate the bias term by using measure-
ments of the system up to generation i . In principle, one could
estimate the b i−1 as the difference between the realized change in
the mean,Δz̄ i−1, and the prediction from the breeder’s equation,
Gi−1P

−1
i−1s i−1. Assuming that the bias changes slowly, one could

further assume that b i ≈ b i−1 and obtain an estimation for the
bias at generation i . The problem with this approach is that
both the breeder’s prediction and the change in the mean for
the trait are measured with noise, which typically is very large.
This random component of the prediction error is due to several
factors, including drift and sampling, and can be so large as to
obscure the bias estimated using only the past generation (30).
Furthermore, the stochastic component of the error is indepen-
dent in each generation, so it contains no useful information that
can be exploited to improve predictions. This component of the
error, therefore, has to be separated from the deterministic part
(i.e., the bias), which can be used to improve predictions.

To minimize the stochastic component of the prediction error,
we propose here to use a Kalman filter to estimate Δz̄ i and b i

in each generation. The filter is explained in the next section.
Most importantly, the filter works by efficiently separating the
stochastic component of the error from the bias. To simplify the
bookkeeping and notation, we will develop the equations of the
filter for each trait separately. We then rewrite Eq. 2 for each
trait as

Δi =ΔB
i + bi , [3]

where Δi is the change in the mean of a given trait in generation
i , ΔB

i is the prediction using the breeder’s equation, and bi is the
bias. In the next section, we show how we use a Kalman filter to
estimate the state variables Δ and b in each generation.

Part II: The Kalman Filter. The Kalman filter is a general al-
gorithm to estimate the value of a set of state variables from
noisy measurements (29). To achieve this, the filter integrates
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two sources of information. First, it uses a model of how we
expect the state vector to change from one generation to the
next. This makes the algorithm recursive since the estimate of
the state vector at time i − 1 is used to make an estimate of the
state vector at i . This estimate is combined with a second source
of information to make the estimate of the state vector at time
i . This second source of information is a set of measurements
from the system taken at time i that are related to the state
vector. The filter combines these two sources of information by a
weighted average. How the average is obtained is the central part
of the filter, and it is achieved by calculating a weight matrix that
minimizes the error in the estimates (29). Note that both sources
of information described above have associated noise summarized
by the covariance matrices Ri and Qi (explained below). These
matrices are the parameters of the filter that have to be provided
by the user (Part III: Learning the Parameters of the Kalman Filter).

For this particular application of the Kalman filter, the state
vector at time i is composed of Δi−1 and bi . Note that with the
above definitions, estimating Δi gives us a prediction for z̄i+1

since z̄i+1 = z̄i +Δi . In developing the algorithm below, we use
the symbol ˆ to refer to estimates of the variables (e.g., Δ̂i is
the estimate of the state variable Δi ). We make the assumption
that the response to directional selection does not show abrupt
changes from one generation to the next (8). Additionally, in this
application we will assume that the bias changes slowly in time.
In this way, we define Δi−1 =Δi−2 + ηi and bi = bi−1 + ηbi ,
where ηi = (ηi , η

b
i ) is a vector of small changes that we assume

to be normally distributed with mean zero and covariance matrix
Qi . Note that the assumption here is not that the state variables are
constant in time but rather, that they do not show abrupt changes
from one generation to the next.

There are two measurements at time i that we can use to
improve our estimates. We use the symbol ∼ to indicate that
the variable has been measured with noise. The measurements
are Δ̃B

i =ΔB
i + vB

i and Δ̃i−1 =Δi−1 + vi , where we assume
that v i = (vB

i , vi) is a vector of Gaussian measurement error with
mean zero and covariance matrix Ri .

The Kalman filter combines the estimates of the state variables
in i − 1 (i.e., Δ̂i−2 and b̂i−1) and the new measurements (i.e.,
Δ̃B

i and Δ̃i−1) to provide the best possible estimates of the
state variables in generation i (i.e., Δ̂i−1 and b̂i ). Given the
relationships described above, this is done using the following
formula:(

Δ̂i−1

b̂i

)
=

(
Δ̂i−2

b̂i−1

)
+Ki

((
Δ̃B

i

Δ̃i−1

)
−

(
Δ̂i−2 − b̂i−1

Δ̂i−2

))
.

[4]
The first term of the right-hand side is the state vector estimates

in step i − 1. The second term is the correction, which is the
product of the matrix Ki and the error. The error is formed by the
difference between the measurements Δ̃B

i and Δ̃i−1 and their
expected values using the estimates at step i − 1 (Appendix A).
The estimate of the bias is finally used to predict the change at
generation i using Eq. 3, as Δ̂i = Δ̃B

i + b̂i .
Ki is a 2× 2 matrix called the Kalman gain, which assigns

weights to the correction. The calculation of Ki is the key of the
filter, and it is done for each i . Ki is a trade-off between the
confidence we have on the estimate of the state vector at i − 1
and the confidence we have on our measurements at generation
i , and it is calculated to minimize the error covariance matrix of
the estimates (28, 29). If the measurements are to be trusted, then
the gain will give more weight to the second term of Eq. 4. If the
estimates at i − 1 are to be trusted, then the gain will assign more

weight to the first term of the equation. The “trust” is quantified
by the associated error covariance matrices. This together with the
calculation of the gain Ki is explained in Appendix A.

As mentioned above, the algorithm is recursive; the estimates
obtained in generation i − 1 using Eq. 4 are the starting point for
the prediction in generation i . We then require initial estimates at
time i = 1 to begin the recursion. For our state variables, b̂1 = 0,
and Δ̂0 is the prediction using the breeder’s equation.

Part III: Learning the Parameters of the Kalman Filter. The
matrices Qi and Ri have to be provided by the user to im-
plement the filter explained in Part II: The Kalman Filter. Qi

is the covariance of the vector ηi , and Ri is the covariance of
vector v i , which describes measurement noise. These matrices
are hard to calculate analytically. For example, the variance in
the measurement noise for Δ̃i−1 is affected by drift, selection,
measurement, and sampling (8). An added difficulty is that Ri

and Qi can change in time.
Instead of calculating the matrices Ri and Qi analytically,

we learn them using the time series of the trait means. Several
methods exist to identify these matrices using data from the time
series (31–33). Here, we propose a simple method to learn the
matrices at generation i using a window of the last L recorded
changes in the mean {Δ̃i−L, . . . , Δ̃i−1} to learn the values of
Ri and Qi (similar to the method presented in ref. 33). This
is done by running the filter inside the window with several
combinations of Ri and Qi . We then calculate the prediction
error of the method in the window for each combination of Ri

and Qi . The error is calculated as the difference between the
prediction Δ̂i and the trueΔi . If the trait mean in each generation
is measured with error, the true Δi can be estimated by first
making a linear regression of the means against generations in
the window and then, calculating the per-generation change (11).
The combination of Ri and Qi that results in the smallest error
is then used to make the actual prediction of interest at time i .
Note that this process is done in every generation i for each time
series separately. In this way, the method learns the best Ri and
Qi possible for the specific system at time i .

To learn the matrices, we assume that Ri and Qi are roughly
constant inside the window. This sets a limit to how large the
window can be since if the window is too large, then the matrices
may change substantially inside the window. Then, the size of the
window should be kept relatively small, making it hard to learn all
the elements of the 2× 2 matrices Ri and Qi (i.e., more elements
to learn require a larger dataset). To reduce the number of elements
to learn, we make additional simplifications about Ri and Qi , as
detailed in Appendix B. These simplifications allow us to reduce
the identification to a single parameter to be learned from the
data in the moving time window. We call this parameter ρi , and
it summarizes the relationship between the Qi and Ri matrices
(Appendix B). The value of ρi will adjust in each generation to
reflect the amount of stochastic noise in the data inside the time
window, which is of key importance to determine the value of
K as explained above. For example, if measurement noise is large,
then ρi adjusts accordingly by becoming small so that the gain Ki

assigns little weight to the second term of Eq. 4. For the analyses
in this paper, we use a window of size L for i > L and size L= i
for 2< i � L (i.e., we use the available generations in the record).

Apart from using the window to learn the parameter ρi of the
Kalman filter, we also use it to approximate the uncertainty in the
predictions using the KF method. To do this, we calculate the SD
of the residuals of the predictions against the true change inside
the window. We use this as the uncertainty for the predictions of
the method.

PNAS 2022 Vol. 119 No. 28 e2117916119 https://doi.org/10.1073/pnas.2117916119 3 of 11
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Testing the Method. We compare the performance of different
methods in predicting the response to directional selection using
two artificial selection experiments, one with teeth simulations
and one with the wing of the fruit fly (Fig. 1). We compare
three prediction methods: the multivariate breeder’s equation,
the method we introduce, and a univariate method based on
realized heritability (h2). This last method uses the time window
of past generations to estimate the realized h2 as the slope of
the regression of the cumulative response to selection against the
cumulative selection differential (11). This realized h2 is then used
to predict change at generation i .

The performance of the prediction methods is assessed by
calculating the error for single-generation predictions obtained
as the relative rms error (RMSE) between the multivariate series
of predictions and the multivariate series of true changes. The
relative RMSE is calculated as the squared root of the sum of the
squared differences between true and predicted changes, relative

to the true changes. As explained in Materials and Methods, the
true change for the teeth experiments is directly the measured
change. For the fly experiments, the true change is obtained from
a quadratic regression of the means (Fig. 1G). The RMSE is a
general measurement of the goodness of prediction for the whole
time series, which is affected by both the accuracy (i.e., bias) and
the precision (i.e., variance) of the predictors. It is, therefore, the
main criteria to compare methods used in this work. Note that
the RMSE reported here removes the error from the two first
generations since at least two generations are required to estimate
the first realized h2.

Predicting the Response to Selection in Teeth Simulations. The
teeth artificial selection experiments are in silico simulations of
evolution in a population. A key feature of these simulations is that
the mapping between genetic and phenotypic variation is done us-
ing a model of development that produces realistic morphological
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Fig. 1. Summary of the artificial selection experiments. A–D correspond to the teeth experiments, and E–H correspond to the fly wing experiments. A shows
the tooth morphology and the three landmarks used for the experiments. The five traits are the x and y coordinates for anterior and posterior landmarks and
the y coordinate for central landmark. B shows the directions of selection for 4 of the 32 evolutionary simulations as examples. C is the mean of trait 1 in time for
simulation 2, and D shows the change in the trait mean. We do not make a regression in C because there is little measurement noise. E shows the morphology
and the five landmarks on the wing. There are six phenotypic traits that are obtained after aligning the 10 coordinates of these landmarks using Procrustes
superimposition. F shows the direction of selection. G shows the mean of trait 3 for line R1 together with a quadratic fit to the data and its 90% CI (remaining
traits and replicate lines are shown in SI Appendix, Fig. S1). H shows the corresponding change in the mean of trait 3. The line with its 90% CI is the true change
estimated from the quadratic regression shown in G, while the points are the measured changes with noise.

4 of 11 https://doi.org/10.1073/pnas.2117916119 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 8
7.

95
.1

3.
19

6 
on

 S
ep

te
m

be
r 

8,
 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

87
.9

5.
13

.1
96

.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117916119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117916119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117916119/-/DCSupplemental
https://doi.org/10.1073/pnas.2117916119


variation (34). Importantly, the genotype–phenotype map of this
model is known to be complex and lead to biases in the estimation
of the response to selection (26). There are a total of 32 simulations
with different optima, each of 30 generations (Fig. 1C ). Fig. 1
shows the tooth morphology and the three landmarks used. The
x and y coordinates of these landmarks are the five measured
traits. Fig. 1 also shows the response to selection for one trait in
an example simulation.

Because the data are simulated, all conditions are controlled.
This allows us to study the performance of the prediction methods
in different scenarios, where specific sources of prediction error are
isolated and when sources are interacting with each other. To study
how using incorrect estimates of Gi and Pi affects predictions,
we introduce the parameter m , which determines how often the
estimates of Pi and Gi are updated (i.e., m = 1 means that Pi

and Gi are updated in every generation). In the simulations, the
selection differential si is known in each generation since all indi-
viduals are measured with no error. However, in many scenarios,
there can be large uncertainty in the measurement of selection.
This is the case when selection is not measured in every generation
or when only a sample of the population is used to estimate
selection, leading to SEs that can be as large as the measurement
of selection itself (8, 35). We investigate the sensitivity of the
different predictors to noise in the measurement of selection by
introducing the parameter σ, which defines the distribution of
noise that we add to si in each generation. For this, we multiply
the selection differential si in each generation by 1 + u , where u
is a random number from a normal distribution with mean zero
and SD σ. Finally, we also try different values of L, the number of
past generations in the moving window used by the KF method (to
learn the parameter ρi ) and the realized h2 method (to estimate
the realized h2). By trying different combinations of the above
parameters, we can explore different scenarios and evaluate how
well the methods predict. For example, form = 1 andσ = 0.3, we
can evaluate how the methods deal with noise when Gi and Pi are
estimated in each generation, and form = 30 andσ = 0.3, we can
further study how the methods perform when the matricesGi and
Pi are assumed constant in addition to the stochastic noise in si .

Fig. 2A summarizes the total error for the different prediction
methods in the teeth simulations. Different scenarios are explored,
characterized by the combinations of m , σ, and L as described
above. The figure shows that the KF method outperforms the
alternatives on average. The KF method is particularly better than
the breeder’s equation when Gi and Pi are not updated in every
generation (i.e., m = 30, regardless of σ and L) since it is able
to correct the prediction bias generated by outdated estimates of
variance components. In the idealized scenario with m = 1 and
σ = 0, the breeder’s equation is the least biased possible. In this
case, the KF method reduces the spread of the prediction error
toward lower values but cannot reduce the median error with
respect to the breeder’s equation. This is because the uncertainty
of the method is sometimes larger than the value of the bias.

When compared with the realized h2 method, the KF method
is particularly better when selection is measured with noise
(σ = 0.3) and when the size of the time window is larger (L= 15).
This occurs because the KF method can manage noise more
efficiently through the Kalman filter and because it is less sensitive
to the size of the time window L. The latter results from the
fact that the realized h2 method assumes that the h2 is constant
inside the time window and therefore, has problems if it changes
rapidly. The KF method, on the other hand, only assumes that the
parameter ρi of the Kalman filter is constant inside the window,
which is a more robust assumption. Further, the KF method
greatly benefits from frequent updates of the variance components
(m = 1), while the realized h2 method is unable to exploit this
information. An additional limitation of the realized h2 method
is that it is intrinsically univariate, so it cannot use information of
selection on other traits.

Fig. 2B shows the predicted and true changes for some traits in
example simulations for the scenario with m = 30, σ = 0.3, and
L= 5 (the remaining traits are shown in SI Appendix, Fig. S2).
Note that the difference between the prediction using the breeder’s
equation and the KF method in each generation i is the bias bi ,
which is shown explicitly for each example in Fig. 2C.

We further use the teeth artificial selection experiments to study
the situation where traits that are under selection are omitted from
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Fig. 2. Comparison of the prediction methods for the teeth experiments. A shows box plots of the prediction error for the 32 simulations using the tooth
model for the three prediction methods compared (i.e., the KF method, the breeder’s equation, and the realized h2 method). Different scenarios were explored
by modifying the parameters L (the size of the time window), m (the update time of variance component estimates), and σ (the stochastic error in the estimate
of the selection differential). B shows examples of time series for the predictions and true changes with m = 30, σ = 0.3, and L = 5. The time series correspond
to traits 1, 2, and 4 in simulations 6, 11, and 15, respectively (remaining traits are shown in SI Appendix, Fig. S2). The insets show a scheme of the tooth, with the
direction of selection in each case represented with arrows and the trait plotted shown with a bar. C shows the dynamics of the bias for each of the examples
given in B.

PNAS 2022 Vol. 119 No. 28 e2117916119 https://doi.org/10.1073/pnas.2117916119 5 of 11

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 8
7.

95
.1

3.
19

6 
on

 S
ep

te
m

be
r 

8,
 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

87
.9

5.
13

.1
96

.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117916119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117916119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117916119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117916119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117916119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117916119/-/DCSupplemental
https://doi.org/10.1073/pnas.2117916119


the prediction, what is known as the missing character problem.
Specifically, we predict the change in traits 1, 2, and 3 without data
from traits 4 and 5. As before, we explore different scenarios by
varying the values of m , σ, and L. This allows us to further study
how omitting traits interacts with other sources of bias, such as
using outdated estimates of variance components (i.e., m = 30).

Fig. 3A shows a summary of the prediction errors of the
different methods in the different scenarios studied. We find that
omission of traits can lead to biases and that the KF method
is able to correct the errors to a large extent. Fig. 3B includes
the time series of the same trait in an example simulation, with
predictions being done for different combinations of m , σ, and
L. The corresponding bias is shown in Fig. 3C. Note that the bias
becomes larger when in addition to the omission of traits in the
prediction, it is assumed that variance components are constant
(compare m = 1 and m = 30 in the time series). Further, note
that the realized h2 method becomes heavily biased for larger
window size, while the KF method is robust to these changes
(compare L= 5 and L= 15).

Predicting the Response to Selection in the Wing. The artificial
selection experiments in the wing show the full complexity of
the problem of predicting the response to selection in a real
population. This is the most common scenario in which the KF
method can be applied. There are three replicates with selection
and one control line, all coming from the same base population
and running for 20 generations (Fig. 1, Materials and Methods,
and SI Appendix, Fig. S1). In each generation, 100 males and 100
females are measured. Selection is applied on five landmarks of
the wing as shown in Fig. 1E by selecting the 50% of measured
individuals in the direction shown in Fig. 1F.

For this experiment, we only calculate the G matrix at the
beginning (i.e., G1). Since the control line and the selection lines
all start from the same base population, we use the pedigree and
phenotypic data of the initial generations of the control to estimate
G1. We call the pedigree depth the number of generations of the
control line used to estimate G1. The larger the pedigree depth,
the more precise the estimate of G1. We test the predicting ability
of the different prediction methods using estimates of G1 for

different pedigree depths ranging from 2 to 15, which correspond
to 400 to 3,000 individuals from the control. We also include a
pedigree depth of one, which means assuming that G1 = P1 (i.e.,
that all phenotypic variation is additive genetic).

Fig. 4 shows the predictions for the change in the traits us-
ing the KF method, the realized h2 method, and the breeder’s
equation for the first three traits in selection line R2 (remaining
traits and lines are shown in SI Appendix, Fig. S2). A pedigree
depth of three was used here, and window sizes of 5 and 15
were explored. The time series of the predictions also includes the
measured changes in each generation as well as the true change
that is obtained from the quadratic regression of the response
(Materials and Methods). It can be seen that the KF method
yields predictions that are closer to the true change than the other
methods on average.

We compare the predictions against the measured changes
without the regression by calculating the cumulative error in gen-
eration i as the sum of the differences between the prediction and
the measured change (i.e., without regression) from generation
2 to i . Cumulative errors are shown in Fig. 4 and confirm that
the KF method has cumulative errors closer to zero. Further, note
that the KF method is more robust to changes in the window size
L than the realized h2 method as seen also for the teeth data.

Fig. 5A shows the prediction error for the KF method, the
realized h2 method, and the breeder’s equation for different
pedigree depths and with a window size L= 5 (L= 15 gives very
similar results as shown in SI Appendix, Fig. S4). For low pedigree
depths (i.e., inaccurate estimates of G1 and P1), the realized h2

method outperforms the breeder’s equation, while the opposite
is true for high pedigree depths. This is not surprising since the
performance of the breeder’s equation is largely affected by how
well we can estimate the variance components, while the realized
h2 method is completely independent of the estimates of G1 and
P1 and relies exclusively on past time series data. Note that our
method exploits both sources of information, namely the time
series and the estimates of the variance components.

Notably, the KF method using a G matrix with a small pedigree
depth outperforms the breeder’s equation using a G matrix with a
large pedigree depth. This is important because experimentally, it

A
B

C

KF method
KF method

Fig. 3. Comparison of the prediction methods for the teeth experiments when traits are missing. A shows the prediction error for the 32 simulations using
the tooth model when predictions for traits 1, 2, and 3 are made without information of traits 4 and 5. Errors are shown for different scenarios characterized by
different combinations of parameters L (the size of the time window), m (the update time of variance component estimates), and σ (the stochastic error in the
estimate of the selection differential). B shows the time series of predictions and true changes for trait 2 in example simulation 32. The insets show a scheme
of the tooth, with the direction of selection in each case represented with arrows and the trait plotted shown with a bar. Different combinations of m, L, and σ
were used in each plot. The corresponding dynamics of the prediction bias are shown in C.
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KF method

Fig. 4. Comparison of the prediction methods for the first three traits in selection line R2 of the fly wing experiments. The figure shows the time series for the
different methods together with the corresponding cumulative errors for window sizes (L) of 5 and 15 generations in Left and Right, respectively. The time series
of the predictions are shown on the left of each panel together with the true change (i.e., obtained from the regression of trait means) (Materials and Methods)
and the measured change as points. The predicted and true changes are shown with their approximated uncertainties (90% CI for the true change, one SD for
the predictions). The cumulative error for each method is calculated in each generation i as the sum of the difference between the prediction and the measured
change from generation 2 to i. A pedigree depth of three was used to estimate the variance components. The rest of the traits for line R2 as well as the six traits
for lines R1 and R3 are shown in SI Appendix, Fig. S3.

is much more expensive to increase the accuracy of the estimate of
G1 than to apply the KF method. The latter only requires record-
ing the trait means in past generations, while the former requires
phenotypic and relatedness data in particular breeding designs.

We found that there are two sources of prediction bias for the
breeder’s equation in these experiments. First, there is bias asso-
ciated with using wrong estimates of G1 and P1. This prediction
error is most evident when using estimates ofG1 with low pedigree
depth and even more when assuming G1 = P1. Increasing the
pedigree depth of the estimates can correct much of these error.
The second source of bias is the fact that Gi changes during the
experiment. This leads to possible errors at later stages of the
experiment if the G matrix estimated for the base population is
used, even if the estimate of G1 is obtained with high accuracy
(i.e., a deep pedigree in this case).

Both of the errors described above can be seen in Fig. 5B
for trait 6 of line R1 using different pedigree depths, namely 1
(G = P ), 4, and 10. The corresponding time series of the bias
is shown in Fig. 5C. A big part of the error is reduced when
increasing the pedigree depth. However, even when using a precise
estimate of G1 (pedigree depth of 10), the breeder’s predictions
remains biased toward the end of the experiment.

Discussion

We developed a method to predict the response to directional
selection by combining the breeder’s equation with data from
the time series. We tested this method, which we refer to as
the KF method, with two sets of artificial selection experiments

and show that it outperforms the multivariate breeder’s equa-
tion and a univariate method based on realized heritability on
average. The method is general and can be applied to virtually
any evolving system that is under sustained directional selection.
Most importantly, the KF method only requires the record of
means of the trait for past generations, which is relatively easy to
collect, at least compared with alternatives like obtaining better
estimates of Gi . In this way, the method can be applied to a
wide variety of scenarios, especially when the assumptions of the
breeder’s equation are not met, like in the later stages of long-
term selection studies when the full set of traits under selection
is not known and when Gi cannot be accurately estimated. The
more the assumptions are violated, the more the KF method will
outperform the breeder’s equation, as shown in Figs. 2, 3, and 5.

We discuss three key elements of the KF method. The first key
element is the introduction of the bias term in Eq. 2. This is pro-
posed on the grounds of previous theoretical and empirical work
that shows that the expected value of the prediction error using
the breeder’s equation may not be zero (8, 14, 15, 25). The bias is
introduced here as a single term, b, which can be understood as
the quantitative effect of violating the assumptions of the breeder’s
equation, and its value reflects the complex mixture of sources that
is specific to each system. This simple way of modeling the bias
allows for improved predictions but makes it hard to disentangle
how different sources of prediction error quantitatively contribute
to the total value of the bias. If this separation of the bias is
desirable, however, it could be performed after the experiment
is over and the complete time series of the bias is available. For
example, it is possible to perform analyses of the type proposed
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A

B

C

KF method

Fig. 5. Comparison of prediction methods for different pedigree depths in
the artificial selection experiments of the wing. A shows the relative RMSE of
the prediction using the breeder’s equation, the method based on realized
h2, and the KF method for the three replicated selection lines (squares
correspond to line R1, circles correspond to line R2, and triangles correspond
to line R3). The G and P matrices were estimated in the first generation with
varying pedigree depths. A pedigree depth of one means that it is assumed
that G = P. B shows the predicted and true time series for trait 6 of R1 for
different pedigree depths. The corresponding bias is shown in C.

by Le Rouzic et al. (36) to analyze time series data, which are
based on proposing autoregressive models for the parameters
and keeping the model that maximizes the likelihood of the
data.

The second key element of the method is the use of a Kalman
filter. This was necessary to minimize the effect of stochastic noise
on the estimation of the bias, which can be large (11, 30). Figs.
2 and 3 show that the Kalman filter is very robust to stochastic
errors, particularly when compared with the alternative methods.

The third key element of the KF method is that we use a
window of data to learn the parameter ρi of the filter in each
generation using a learning algorithm. Apart from enabling the
method to be used in real time (i.e., during the experiment), it has
the important quality that it allows the parameters to change in
time. Moreover, it exploits the dynamical properties of the time
series (36), which are specific to the population of interest and
its singularities. Note that the moving time window is used to
learn the parameter ρi , which is then used by the filter to estimate
the bias in each generation. In this way, the time window is not
used to estimate the value of the bias directly as the average of
the prediction errors using the breeder’s equation in the window.
This is a valid way of estimating the bias, but it provides worse
estimates than the method based on the Kalman filter (over 23%
worse for the fly wing experiments) (SI Appendix, Table S1). Note
that here we propose to reduce the covariance matrices Ri and
Qi to the single parameter ρi , allowing for a straightforward
learning algorithm that relies on exploring different values of ρ
inside the sliding time window. This simple method to estimate
the covariance matrices gives very good predictions in the datasets
we explore, but other more complex methods can be used for this
purpose (31–33).

The method introduced here can be classified as recursive
because it forecasts the variables of interest in i using the estimate
in i − 1. There has been recent interest in recursive models to
make predictions of future evolution (1, 36–39). For example,
Nosil et al. (1) fitted an autoregressive model using several years
of data of frequency changes of coloration and pattern in a
population of stick insects. They examined whether data from
early time points in the series could predict data in later time
points of the series (similar to what we do using the window of
past generations). They were able to successfully predict changes
in frequency for a trait under clear frequency-dependent selection
but failed to predict change for a trait under a more complex,
unknown form of selection. They conclude that predictability was
limited by the understanding of selection. The authors suggest
that knowledge of selection could be determinant in improving
predictions when using recursive models. The method we propose
in this paper does exactly this; it combines a recursive model with
knowledge of selection given by the breeder’s equation. Used like
this, the breeder’s prediction contributes the type of information
that purely recursive models are lacking. At the same time, purely
theoretical models, like the breeder’s equation, are based on sim-
plifying assumptions that may miss some of the complexity of the
system. The efficient combination of the recursive model, which
is data driven, and the breeder’s equation, which is theoretical,
is what results in the method proposed here to outperform each
approach when used separately.

A notable finding is that the KF method provides good pre-
dictions even when G is not estimated at all. This is assuming
that G = P . This is shown in Fig. 5 for the fly experiments and
SI Appendix, Fig. S5 for the teeth experiments. This is important
because the P matrix has been used as a proxy of the G matrix
for morphological traits, a simplification suggested due to the
difficulty in estimating the latter. The simplification that G is
proportional to P is known as Cheverud’s conjecture (40–42)
and has been used, for example, in ref. 43 to infer the evolution
of patterns of genetic covariation under directional selection.
When used in this method, assuming G = P still provides good
predictions because the resulting deviations are corrected by the
bias term. Note that even in this case, the information of selection
is still exploited, as it enters the predictions through the selection
differential, s i . An important note is that both the breeder’s
equation and the KF method perform significantly better when
Gi is estimated than when it is assumed that Gi = Pi (compare
precision 1 and 2 in Fig. 5A). This means that Gi contains useful
information, even when estimated with relatively low precision.
This improvement does not occur for the realized h2 method,
which is unable to incorporate Information from variance com-
ponents and only relies on time series data.

The method proposed here was developed under the assump-
tion of directional selection sustained for several generations. The
method is, therefore, limited to this type of selection. However,
the formalism of the Kalman filter has the potential to be used
for evolutionary predictions in several other scenarios, particularly
when stochastic noise is a serious issue. For example, the Kalman
filter could be coupled with an autoregressive model to predict
evolution under frequency-dependent selection based on previous
evidence that such models are adequate for this type of selection
(1). For the case of fluctuating selection, prediction is severely
limited by the difficulty in obtaining information of how selection
is acting in each generation. Recent efforts (39) have tried to
map environmental fluctuations to fluctuations in selection since
certain environmental cues, such as temperature, are much easier
to measure than selection itself. By modifying the equations that
relate the states with the measurements, one could include the
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information of these other environmental cues to improve the
predictions under the Kalman filter formalism similar to the one
introduced here.

Data-driven methods are only becoming more popular in the
future. This change from more classical, theoretical methods is
fueled by the rapid accumulation of data. The method we propose
here is line with this change by combining theory and data. As
suggested by other authors (38), this is a promising future for
developing better predictions in evolutionary biology.

Materials and Methods

Experiment 1: Teeth. We used data of in silico artificial selection experiments
on teeth. Details of the simulations are given in previous work, and the data are
publicly available (19, 26). Briefly, each evolutionary simulation has a popula-
tion of genotypes. Each genotype is mapped to a tooth morphology through a
deterministic model of tooth development (34, 44). The tooth model recapitu-
lates the process of development for a tooth, starting from a flat epithelium to
a complex three-dimensional morphology. The dynamics of development are
determined by the value of a set of parameters that are determined by the
genotype. Traits were measured on each tooth. These were the x and y coordinates
of three landmarks located in the three tallest cusps of the tooth (Fig. 1A). In
each generation, once the genotypes of all individuals had been mapped to
their corresponding phenotypes using the tooth development model, selection
was applied by choosing 50% of the individuals with morphology closest to the
optimum. Each simulation had an optimum shape defined at the beginning,
which determined the direction of selection (Fig. 1C). Selected parents were
paired randomly and produced the next generation of genotypes. Each couple
produced four offspring, resulting in a constant population size. Recombination
and mutation were included in each generation, and the process was iterated to
simulate evolution. There are in total 32 simulations, each with a different selec-
tion optimum. Each simulation was run for 30 generations using a population of
300 males and 300 females.

Estimation of Variance Components and True Change. In each genera-
tion, the elements of the breeder’s equation were estimated (i.e., Gi, Pi, and
s i). Variance components were estimated from a half-sibling breeding design
using individuals at generation i as the base population (details are in ref.
25). The animal model used was the simplest possible (i.e., with only addi-
tive genetic merit fitted to each individual). Restricted maximum likelihood
(REML) estimates of Gi and Pi were obtained using the software WOMBAT (45).
Sampling variation in the estimation of Gi was accounted for using the REML–
multivariate normal (REML-MVN) method (46). For each generation, we resam-
pled 100 G and P matrices from this distribution and used them to calculate
100 predicted changes using the selection differential and the breeder’s equa-
tion. We plot the mean and one SD of these predictions. Note that the tooth
development model is deterministic and that there is no measurement error.
Moreover, we have a large sample size. This allows for very precise estimates
of Gi and Pi. Due to the fact that there is little measurement noise for the
population mean in the simulations, the true change was obtained directly
as Δi = z̄i+1 − z̄i. This is the amount that we look to predict at generation i
(Fig. 1 E and G).

Experiment 2: Fruit Fly Wing. We performed artificial selection experiments
on the wing of the fruit fly Drosophila melanogaster. The starting population
was founded from 250 isofemale lines derived from flies captured during the
summer of 2017 in Groningen, the Netherlands by the Billeter laboratory. From
each line, 25 females and males were collected and merged to make a large
outbred population that was maintained in laboratory conditions. For the initial
generation of the experiments, 100 virgin males and 100 virgin females from the
large population were randomly assigned to one of four lines. Three of these lines
were subjected to selection (R1, R2, and R3), with the remaining being a control
without selection (C1). Lines were kept at 25 ◦C with alternating 12-h light and
dark cycles during the experiment.

In each generation, 100 males and 100 females were collected as virgins.
The left wing of each collected, anesthetized fly was taken by the automatic
system known as the WingMachine (47, 48). The x and y coordinates of the five

landmarks shown in Fig. 1B were obtained using a semiautomatic landmarking
software (47). In the control line, 50 males and 50 females were chosen randomly
as parents for the next generation. In the selected lines, the 50 males and
50 females with wings with the shortest distance to the optimum morphology
were selected as parents. The distance of each individual to the optimum was
calculated as the Euclidean distance between the values of the traits in the
individuals and the optimal values of the traits. The optimum morphology is
shown in Fig. 1D, and it is the same for the three lines with selection. The process
of image processing and selection was repeated in each generation. Sibling
mating was avoided to reduce inbreeding. The process was repeated for a total of
20 generations, equivalent to 4,000 flies per line (16,000 in total). If some of the
formed couples did not produce offspring for the next generation either because
one of the parents died or due to infertility, we measured more offspring from
other couples to complete the 200 individuals per generation. We also formed
three extra couples in each generation to provide extra individuals in case some
of the original 50 couples failed to produce offspring.

As mentioned above, we measured the x and y coordinates of five landmarks,
resulting in 10 traits. The data were aligned by generalized Procrustes least
squares superimposition. Four degrees of freedom are lost in this process: one
to estimate wing size and three to standardize the orientation of wing shapes.
Therefore, there are only six independent traits in the data. For these traits to
be comparable between lines and through the generations, we use the six first
components of a principal component analysis of generation 1 of the control as
a reference and project all the data to that space. The resulting six phenotypic
traits are a linear combination of the original 10 traits that conserves all relevant
variation in all lines. In this paper, we refer to these six traits as the phenotypic
traits. The means of these traits against generations for all four experimental lines
are shown in SI Appendix, Fig. S1.
Estimation of variance components and true change. All lines start from the
same founding population. We estimate G1 and P1 for this founding population
by pooling the first n generations of the control. For these n generations, we have
the pedigree and phenotypic data. We call n the depth of the pedigree. Here, we
explore values of n from 2 to 15. REML estimates of G1 and P1 were obtained
using the software WOMBAT (45), and sampling variation was estimated using
the REML–MVN method (46). The linear, mixed effect model (i.e. animal model)
used included sex, generation, and identification of the person measuring as
fixed effects.

The estimation of the means in each generation inevitably has noise. Noise
arises from the imaging and landmarking process, finite sampling of the popu-
lation, and drift. Because we focus on directional selection, this noise has to be
removed. We perform a quadratic regression to the 20-generation time series of
the means, which is the standard type of regression used for long-term artificial
selection data (8, 49–51). The fitted values are used as Δi, which we call the true
change. This is compared with the change predicted by the different methods to
calculate the prediction error (Fig. 1 F and H). We also compare predictions with
the measured change in trait means (i.e., without regression) by calculating the
cumulative prediction error. For generation i, the cumulative error is the sum of
the differences between the measured change and the predicted change from
generation 1 to i.

Appendix A

Here, we will derive the equations of the Kalman filter and show
how the gain matrix Ki is calculated in each generation. For this,
we first express the model in matrix notation. The state equation
is given by

x i = x i−1 + ηi , [5]

where x i = (Δi−1, bi)
T and ηi =

(
ηi , η

b
i

)T . The measure-
ments used in the model are the prediction of the breeder’s
equation, Δ̃B

i , and the most recent measured change in trait
means, Δ̃i−1. ΔB

i is related to the states via the following
relationship:

ΔB
i =Δi − bi =Δi−1 + ηi+1 − bi . [6]
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The measurement equation is then

y i = Cx i + Bηi+1 + v i [7]

with y i =
(
Δ̃B

i , Δ̃i−1

)T

, v i =
(
vB
i , vi

)T , and

C =

(
1 −1
1 0

)
; B =

(
1 0
0 0

)
; [8]

the state-space model is determined by [5] and [7]. The objective
of the Kalman filter is to provide estimates of the states at
generation i (x̂ i ) using the previous estimate (x̂ i−1) and new
measurements (y i ). Particularly, the Kalman filter provides the x̂ i

that minimizes the variance of the error e i = x i − x̂ i denoted by
Φi = E [e ie

T
i ]. For this, it uses the expression

x̂ i = x̂ i−1 +Ki(y i − C x̂ i−1), [9]

which depends on the matrix Ki . To find the Ki that minimizes
Φi , we first need to obtain an expression for the error. Using [5],
[7], and [9], we get

e i = x i − x̂ i

= (I −Ki)

[(
I
C

)
e i−1 +

(
ηi

Cηi + Bηi+1 + v i

)]
,

[10]

where I is the identity matrix. Considering ηi , vi and ei−1

independent, the expected value of the cross-products between
e i−1 and both ηi and v i vanishes. Then, we get

Φi = (I −Ki)

[(
I
C

)
Φi−1

(
I
C

)T

+

(
Qi QiC

T

CQi CQiC
T + R∗

i

)] (
I

−KT
i

)
, [11]

where R∗
i = BQi+1B

T + Ri , Qi = E [ηiη
T
i ], and Ri =

E [v iv
T
i ]. We want to find Ki such that Φi is minimized.

This is a convex quadratic minimization problem with a unique
solution that can be obtained, for example, by using the method
of completing the squares (ref. 29, pp. 430–433). The solution is
given by

Ki = (Φi−1 +Qi)C
T (C (Φi−1 +Qi)C

T + R∗
i )

−1, [12]
x̂ i = x̂ i−1 +Ki(y i − C x̂ i−1), [13]
Φi = (I −KiC )(Φi−1 +Qi). [14]

From this recursion, we get estimates of the states Δ̂i−1 and b̂i .
Finally, the prediction at generation i is given by

Δ̂i = Δ̃B
i + b̂i . [15]

Appendix B

To implement the Kalman filter given in Appendix A, we need
the matrices Qi and R∗

i . These parameters are, however, gen-
erally unknown and have to be identified from the data. Here,
we use a simple method based on exploring different values of
the parameters and keeping the ones that result in the smallest
prediction error in a moving time window. For this, we reduce the
matrices to a single parameter ρi by assuming that the matrices
are diagonal with equal elements in the diagonal: that is, Qi =
qi I and R∗

i = r∗i I , where I is the 2× 2 identity matrix. The
reduction is justified by the fact that the noise in the measure-
ments, as well as in the states, is in the same units and of the
same order of magnitude. We further assume that these values are
constant inside the window: that is, qi ≈ qi+1 and r∗i ≈ r∗i+1.
If we use these definitions, we can rewrite the equations from
Appendix A as

Ki = (Φ∗
i−1 + ρiI )C

T (C (Φ∗
i−1 + ρiI )C

T + I )−1, [16]
x̂ i = x̂ i−1 +Ki(y i − C x̂ i−1), [17]
Φ∗

i = (I −KiC )(Φ∗
i−1 + ρiI ), [18]

where we define Φ∗
i =Φi/r

∗
i and ρi = qi/r

∗
i . For each gener-

ation i and for a window size of L, the Kalman filter is run
for generations k ∈ {i − L, . . . , i − 1} with different values of
ρi and using Eqs. 16–18. Then, ρi is chosen as the value that
minimizes the mean square error between the predictions Δ̂k and
the true value Δk . For the teeth simulations, Δk is directly the
measured change in trait mean (i.e., Δ̃k ) since there is very little
measurement noise for the trait means. For the wing data, a better
estimate of Δk is obtained by first making a linear regression of
the means of the traits inside the window and then calculating
the change in trait mean as the slope of the regression [11]. For
the first two iterations of the algorithm, the window is too small
to calculate ρi , so we set it to zero. The initial conditions are
x̂ 1 = (Δ̃B

1 , 0)
T and Φ∗

1 = 0.

Data Availability. The data from in-silico experiments using the tooth model is
available in Dryad at https://doi.org/10.5061/dryad.9cnp5hqdr (52). The R script
to apply the method and the data from the D. melanogaster experiments are
stored in GitHub at https://github.com/millisan/Learning-from-mistakes (53).
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29. K. Åström, B. Wittenmark, Computer-Controlled Systems: Theory and Design (Prentice-Hall,

Englewood Cliffs, NJ, ed. 3, 1997).
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